357 research outputs found
Kinetic theory of cluster impingement in the framework of statistical mechanics of rigid disks
The paper centres on the evaluation of the function n(theta)=N(theta)/N0,
that is the normalized number of islands as a function of coverage 0<theta<1,
given N0 initial nucleation centres (dots) having any degree of spatial
correlation. A mean field approach has been employed: the islands have the same
size at any coverage. In particular, as far as the random distribution of dots
is concerned, the problem has been solved by considering the contribution of
binary collisions between islands only. With regard to correlated dots, we
generalize a method previously applied to the random case only. In passing, we
have made use of the exclusion probability reported in [S. Torquato, B. Lu, J.
Rubinstein, Phys.Rev.A 41, 2059 (1990)], for determining the kinetics of
surface coverage in the case of correlated dots, improving our previous
calculation [M. Tomellini, M. Fanfoni, M. Volpe Phys. Rev.B 62, 11300, (2000)].Comment: 10 pages, 3 figure
Facies and faunal assemblage changes in response to the Holocene transgression in the Lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean)
This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean
Recommended from our members
Secondary Natural Gas Recovery: Targeted Technology Applications for Infield Reserve Growth
Activities during the year comprised screening and selection of gas fields for detailed studies; integrated geological, petrophysical, geophysical, and engineering analyses of the fields selected; and data acquisition in cooperative wells. A comprehensive workplan was prepared, and a methodology for geological and engineering screening of sandstone reservoirs was developed and applied to leading candidate fields. Contacts made with field operators resulted in active participation of Mobil Exploration and Producing U.S., Inc., and Shell Western Exploration and Production Inc.
Lake Creek, Seeligson, McAllen Ranch, and Stratton-Agua Dulce fields were selected for study. These fields are representative of a spectrum of depositional systems and reservoir heterogeneities in highly productive gas reservoirs in the Texas coastal plain. Producing intervals are fluvial Frio reservoirs in Seeligson and Stratton-Agua Dulce fields, deltaic Vicksburg reservoirs in McAllen Ranch field, and deltaic Wilcox reservoirs in Lake Creek field.
New data, comprising cores, open- and cased-hole logs, vertical seismic profiles, and sequential formation-pressure tests, were acquired in two wells in Seeligson field and in one well in McAllen Ranch field. Results to date suggest that reservoir heterogeneity can be defined using integrated geologic, geophysical, and engineering data.Bureau of Economic Geolog
Effect of anisotropy on the ground-state magnetic ordering of the spin-one quantum -- model on the square lattice
We study the zero-temperature phase diagram of the
-- Heisenberg model for spin-1 particles on an
infinite square lattice interacting via nearest-neighbour () and
next-nearest-neighbour () bonds. Both bonds have the same -type
anisotropy in spin space. The effects on the quasiclassical N\'{e}el-ordered
and collinear stripe-ordered states of varying the anisotropy parameter
is investigated using the coupled cluster method carried out to high
orders. By contrast with the spin-1/2 case studied previously, we predict no
intermediate disordered phase between the N\'{e}el and collinear stripe phases,
for any value of the frustration , for either the -aligned () or -planar-aligned () states. The quantum phase
transition is determined to be first-order for all values of and
. The position of the phase boundary is determined
accurately. It is observed to deviate most from its classical position (for all values of ) at the Heisenberg isotropic point
(), where . By contrast, at the XY
isotropic point (), we find . In the
Ising limit () as expected.Comment: 20 pages, 5 figure
Decay of isolated surface features driven by the Gibbs-Thomson effect in analytic model and simulation
A theory based on the thermodynamic Gibbs-Thomson relation is presented which
provides the framework for understanding the time evolution of isolated
nanoscale features (i.e., islands and pits) on surfaces. Two limiting cases are
predicted, in which either diffusion or interface transfer is the limiting
process. These cases correspond to similar regimes considered in previous works
addressing the Ostwald ripening of ensembles of features. A third possible
limiting case is noted for the special geometry of "stacked" islands. In these
limiting cases, isolated features are predicted to decay in size with a power
law scaling in time: A is proportional to (t0-t)^n, where A is the area of the
feature, t0 is the time at which the feature disappears, and n=2/3 or 1. The
constant of proportionality is related to parameters describing both the
kinetic and equilibrium properties of the surface. A continuous time Monte
Carlo simulation is used to test the application of this theory to generic
surfaces with atomic scale features. A new method is described to obtain
macroscopic kinetic parameters describing interfaces in such simulations.
Simulation and analytic theory are compared directly, using measurements of the
simulation to determine the constants of the analytic theory. Agreement between
the two is very good over a range of surface parameters, suggesting that the
analytic theory properly captures the necessary physics. It is anticipated that
the simulation will be useful in modeling complex surface geometries often seen
in experiments on physical surfaces, for which application of the analytic
model is not straightforward.Comment: RevTeX (with .bbl file), 25 pages, 7 figures from 9 Postscript files
embedded using epsf. Submitted to Phys. Rev. B A few minor changes made on
9/24/9
Normal scaling in globally conserved interface-controlled coarsening of fractal clusters
Globally conserved interface-controlled coarsening of fractal clusters
exhibits dynamic scale invariance and normal scaling. This is demonstrated by a
numerical solution of the Ginzburg-Landau equation with a global conservation
law. The sharp-interface limit of this equation is volume preserving motion by
mean curvature. The scaled form of the correlation function has a power-law
tail accommodating the fractal initial condition. The coarsening length
exhibits normal scaling with time. Finally, shrinking of the fractal clusters
with time is observed. The difference between global and local conservation is
discussed.Comment: 4 pages, 3 eps figure
Breakdown of Scale Invariance in the Phase Ordering of Fractal Clusters
Our numerical simulations with the Cahn-Hilliard equation show that
coarsening of fractal clusters (FCs) is not a scale-invariant process. On the
other hand, a typical coarsening length scale and interfacial area of the FC
exhibit power laws in time, while the mass fractal dimension remains invariant.
The initial value of the lower cutoff is a relevant length scale. A
sharp-interface model is formulated that can follow the whole dynamics of a
diffusion controlled growth, coarsening, fragmentation and approach to
equilibrium in a system with conserved order parameter.Comment: 4 pages, 4 figures, RevTex, submitted to PR
High-Order Coupled Cluster Method Study of Frustrated and Unfrustrated Quantum Magnets in External Magnetic Fields
We apply the coupled cluster method (CCM) in order to study the ground-state
properties of the (unfrustrated) square-lattice and (frustrated)
triangular-lattice spin-half Heisenberg antiferromagnets in the presence of
external magnetic fields. Here we determine and solve the basic CCM equations
by using the localised approximation scheme commonly referred to as the
`LSUB' approximation scheme and we carry out high-order calculations by
using intensive computational methods. We calculate the ground-state energy,
the uniform susceptibility, the total (lattice) magnetisation and the local
(sublattice) magnetisations as a function of the magnetic field strength. Our
results for the lattice magnetisation of the square-lattice case compare well
to those results of QMC for all values of the applied external magnetic field.
We find a value for magnetic susceptibility of for the
square-lattice antiferromagnet, which is also in agreement with the results of
other approximate methods (e.g., via QMC). Our estimate for the
range of the extent of the () magnetisation plateau for the
triangular-lattice antiferromagnet is , which is in good
agreement with results of spin-wave theory () and
exact diagonalisations (). The CCM value for the
in-plane magnetic susceptibility per site is , which is below the
result of the spin-wave theory (evaluated to order 1/S) of .Comment: 30 pages, 13 figures, 1 Tabl
- …