Abstract

Globally conserved interface-controlled coarsening of fractal clusters exhibits dynamic scale invariance and normal scaling. This is demonstrated by a numerical solution of the Ginzburg-Landau equation with a global conservation law. The sharp-interface limit of this equation is volume preserving motion by mean curvature. The scaled form of the correlation function has a power-law tail accommodating the fractal initial condition. The coarsening length exhibits normal scaling with time. Finally, shrinking of the fractal clusters with time is observed. The difference between global and local conservation is discussed.Comment: 4 pages, 3 eps figure

    Similar works

    Full text

    thumbnail-image

    Available Versions