Globally conserved interface-controlled coarsening of fractal clusters
exhibits dynamic scale invariance and normal scaling. This is demonstrated by a
numerical solution of the Ginzburg-Landau equation with a global conservation
law. The sharp-interface limit of this equation is volume preserving motion by
mean curvature. The scaled form of the correlation function has a power-law
tail accommodating the fractal initial condition. The coarsening length
exhibits normal scaling with time. Finally, shrinking of the fractal clusters
with time is observed. The difference between global and local conservation is
discussed.Comment: 4 pages, 3 eps figure