1,115 research outputs found

    RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates

    Get PDF
    Additional file 6: Figure S2. Negative networks of differentially expressed sRNA candidates and their target genes. (a): Mn-CC/C; (b): Mn-9OHAD/CC; (c) Mn-ADD/CC; and (d): Mn-BNA/CC. Squares represent the upregulated (amaranth) or downregulated sRNA candidates (blue); circles represent the putative upregulated (red) or downregulated (green) target genes; links represent the regulation of sRNAs on their target genes

    Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works

    Full text link
    Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.Comment: 24 pages, 11 figures, 3 table

    Visual landmark sequence-based indoor localization

    Get PDF
    This paper presents a method that uses common objects as landmarks for smartphone-based indoor localization and navigation. First, a topological map marking relative positions of common objects such as doors, stairs and toilets is generated from floor plan. Second, a computer vision technique employing the latest deep learning technology has been developed for detecting common indoor objects from videos captured by smartphone. Third, second order Hidden Markov model is applied to match detected indoor landmark sequence to topological map. We use videos captured by users holding smartphones and walking through corridors of an office building to evaluate our method. The experiment shows that computer vision technique is able to accurately and reliably detect 10 classes of common indoor objects and that second order hidden Markov model can reliably match the detected landmark sequence with the topological map. This work demonstrates that computer vision and machine learning techniques can play a very useful role in developing smartphone-based indoor positioning applications

    Bilinear effect in complex systems

    Full text link
    The distribution of the lifetime of Chinese dynasties (as well as that of the British Isles and Japan) in a linear Zipf plot is found to consist of two straight lines intersecting at a transition point. This two-section piecewise-linear distribution is different from the power law or the stretched exponent distribution, and is called the Bilinear Effect for short. With assumptions mimicking the organization of ancient Chinese regimes, a 3-layer network model is constructed. Numerical results of this model show the bilinear effect, providing a plausible explanation of the historical data. Bilinear effect in two other social systems is presented, indicating that such a piecewise-linear effect is widespread in social systems.Comment: 5 pages, 5 figure

    SMURF: Spatial Multi-Representation Fusion for 3D Object Detection with 4D Imaging Radar

    Full text link
    The 4D Millimeter wave (mmWave) radar is a promising technology for vehicle sensing due to its cost-effectiveness and operability in adverse weather conditions. However, the adoption of this technology has been hindered by sparsity and noise issues in radar point cloud data. This paper introduces spatial multi-representation fusion (SMURF), a novel approach to 3D object detection using a single 4D imaging radar. SMURF leverages multiple representations of radar detection points, including pillarization and density features of a multi-dimensional Gaussian mixture distribution through kernel density estimation (KDE). KDE effectively mitigates measurement inaccuracy caused by limited angular resolution and multi-path propagation of radar signals. Additionally, KDE helps alleviate point cloud sparsity by capturing density features. Experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of SMURF, outperforming recently proposed 4D imaging radar-based single-representation models. Moreover, while using 4D imaging radar only, SMURF still achieves comparable performance to the state-of-the-art 4D imaging radar and camera fusion-based method, with an increase of 1.22% in the mean average precision on bird's-eye view of TJ4DRadSet dataset and 1.32% in the 3D mean average precision on the entire annotated area of VoD dataset. Our proposed method demonstrates impressive inference time and addresses the challenges of real-time detection, with the inference time no more than 0.05 seconds for most scans on both datasets. This research highlights the benefits of 4D mmWave radar and is a strong benchmark for subsequent works regarding 3D object detection with 4D imaging radar

    LXL: LiDAR Excluded Lean 3D Object Detection with 4D Imaging Radar and Camera Fusion

    Full text link
    As an emerging technology and a relatively affordable device, the 4D imaging radar has already been confirmed effective in performing 3D object detection in autonomous driving. Nevertheless, the sparsity and noisiness of 4D radar point clouds hinder further performance improvement, and in-depth studies about its fusion with other modalities are lacking. On the other hand, most of the camera-based perception methods transform the extracted image perspective view features into the bird's-eye view geometrically via "depth-based splatting" proposed in Lift-Splat-Shoot (LSS), and some researchers exploit other modals such as LiDARs or ordinary automotive radars for enhancement. Recently, a few works have applied the "sampling" strategy for image view transformation, showing that it outperforms "splatting" even without image depth prediction. However, the potential of "sampling" is not fully unleashed. In this paper, we investigate the "sampling" view transformation strategy on the camera and 4D imaging radar fusion-based 3D object detection. In the proposed model, LXL, predicted image depth distribution maps and radar 3D occupancy grids are utilized to aid image view transformation, called "radar occupancy-assisted depth-based sampling". Experiments on VoD and TJ4DRadSet datasets show that the proposed method outperforms existing 3D object detection methods by a significant margin without bells and whistles. Ablation studies demonstrate that our method performs the best among different enhancement settings

    Strain Enhanced Visible–Ultraviolet Absorption of Blue Phosphorene/MoX2 (X = S,Se) Heterolayers

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149231/1/pssr201800659.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149231/2/pssr201800659_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149231/3/pssr201800659-sup-0001-SuppFig-S1.pd

    Highly Efficient Polarized GeS/MoSe2 van der Waals Heterostructure for Water Splitting from Ultraviolet to Near‐Infrared Light

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152744/1/pssr201900582.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152744/2/pssr201900582_am.pd

    FRAMU: Attention-based Machine Unlearning using Federated Reinforcement Learning

    Full text link
    Machine Unlearning is an emerging field that addresses data privacy issues by enabling the removal of private or irrelevant data from the Machine Learning process. Challenges related to privacy and model efficiency arise from the use of outdated, private, and irrelevant data. These issues compromise both the accuracy and the computational efficiency of models in both Machine Learning and Unlearning. To mitigate these challenges, we introduce a novel framework, Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU). This framework incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies, making it a well-rounded solution for handling various data sources, either single-modality or multi-modality, while maintaining accuracy and privacy. FRAMU's strength lies in its adaptability to fluctuating data landscapes, its ability to unlearn outdated, private, or irrelevant data, and its support for continual model evolution without compromising privacy. Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models. Additional assessments of convergence behavior and optimization strategies further validate the framework's utility in federated learning applications. Overall, FRAMU advances Machine Unlearning by offering a robust, privacy-preserving solution that optimizes model performance while also addressing key challenges in dynamic data environments.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore