137,839 research outputs found

    An effective data placement strategy for XML documents

    Get PDF
    As XML is increasingly being used in Web applications, new technologies need to be investigated for processing XML documents with high performance. Parallelism is a promising solution for structured document processing and data placement is a major factor for system performance improvement in parallel processing. This paper describes an effective XML document data placement strategy. The new strategy is based on a multilevel graph partitioning algorithm with the consideration of the unique features of XML documents and query distributions. A new algorithm, which is based on XML query schemas to derive the weighted graph from the labelled directed graph presentation of XML documents, is also proposed. Performance analysis on the algorithm presented in the paper shows that the new data placement strategy exhibits low workload skew and a high degree of parallelism

    Prediction of Earth rotation and polar motion

    Get PDF
    Based on the analysis of the polar motion behavior, the possibility of predicting polar motion up to one year in advance was found. Comparing these predicted polar coordinates with the observed ones (smoothed), the root mean square (rms) of the differences is about 0.02 seconds. The differences of the relative polar motion are much smaller. For any time interval of 20 to 30 days throughout the whole year, the rms of the relative polar motion differences is about 0.01 second. Compared with the best available VLBI results (from 1977 to 1980), the rms of pred. to obs. is 0.013 seconds, and the relative rms (for time intervals less than two months) is 0.008 seconds (here the observed data is unsmoothed). It appears that 80 to 90% of the polar motion is composed of the stable, predictable Chandler and annual terms. The UT1-UTC has more complicated changes than polar motion making it difficult to find a satisfactory method of long term prediction. So far the rms prediction error is 0.0023 s for up to 30 days

    Design of high-frequency Gm-C wavelet filters

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ECCTD.2009.5274969A high-frequency wavelet filter which employs Gm-C blocks based on leap-frog (LF) multiple-loop feedback (MLF) structure is presented. The proposed method is well suitable for high-quality high-frequency operation since the Gm-C based filter can achieve high frequency, whilst LF MLF configuration has the characteristics of lower magnitude sensitivity and capability of realizing arbitrary rational functions. The Marr wavelet is selected as an example in this paper, and the design for a 100 MHz frequency operation is elaborated. The wavelet filter is simulated using TSMC 1.8 V 0.18 mum CMOS technology. Simulation results indicate that the proposed method is feasible for high frequency operation with relatively low power consumption.Peer reviewe

    Crystals for high-energy calorimetry in extreme environments

    Full text link
    Crystals are used as a homogeneous calorimetric medium in many high-energy physics experiments. For some experiments, performance has to be ensured in very difficult operating conditions, like a high radiation environment, very large particle fluxes, high collision rates, placing constraints on response and readout time. An overview is presented of recent achievements in the field, with particular attention given to the performance of Lead Tungstate (PWO) crystals exposed to high particle fluxes.Comment: To be published in Proc. of the Meeting of the Division of Particles and Fields of the American Physical Society, DPF2004 (Riverside, USA, August 26th to 31st, 2004

    Direct torque control of brushless DC drives with reduced torque ripple

    Get PDF
    The application of direct torque control (DTC) to brushless ac drives has been investigated extensively. This paper describes its application to brushless dc drives, and highlights the essential differences in its implementation, as regards torque estimation and the representation of the inverter voltage space vectors. Simulated and experimental results are presented, and it is shown that, compared with conventional current control, DTC results in reduced torque ripple and a faster dynamic response

    Single inclusive hadron production in pA collisions at NLO

    Full text link
    We study single inclusive forward hadron production in high energy proton-nucleus collisions at next-to-leading order in the Color Glass Condensate framework. Recent studies have shown that the next-to-leading order corrections to this process are large and negative at large transverse momentum, leading to negative cross sections. We propose to overcome this difficulty by introducing an explicit rapidity factorization scale when subtracting the rapidity divergence into the evolution of the target.Comment: 6 pages, 2 figures. Proceedings of DIS 2016, 11-15 April 2016, DESY Hamburg, German

    A 0.18ÎŒm CMOS 300MHz Current-Mode LF Seventh-order Linear Phase Filter for Hard Disk Read Channels

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A 300MHz CMOS seventh-order linear phase gm-C filter based on a current-mode multiple loop feedback (MLF) leap-frog (LF) structure is realized. The filter is implemented using a fully-differential linear operational transconductance amplifier (OTA) based on a source degeneration topology. PSpice simulations using a standard TSMC 0.18ÎŒm CMOS process with 2.5V power supply have shown that the cut-off frequency of the filter can be tuned from 260MHz to 320MHz and dynamic range is about 66dB. Group delay ripple is approximately 4.5% over the whole tuning range and maximum power consumption is 210mW
    • 

    corecore