1,738 research outputs found
Cloning and bioinformatics analysis of an ubiquitin gene of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae)
Ubiquitin which has the function of selective protein degradation may play an important role in the regulation of insect growth and development. The coding sequence of an ubiquitin gene from the larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) named CsUB (GenBank Accession No. GU238420) was cloned by RT-PCR and sequenced in this study, with primers according to the sequences of ubiquitin genes from Homo sapiens, Drosophila melanogaster and Lepidopteran insects. Sequence analysis showed that the length of the coding sequence is 228 bp, encoding 76 amino acids with calculated molecular weight of 8.50 kDa and the theoretical isoeletric point of 5.26. Signal sequence and transmembrane domain had not been found. Multiple sequence alignment indicated that CsUB gene sequence with other known gene sequences of invertebrates and vertebrates had a high degree of homology (more than 72% similarity) and a shorter genetic distance (lower than 0.360). During the genetic diversity analysis, the total of 104 polymorphic sites was detected from 18 ubiquitin gene sequences and 18 haplotypes were sorted. Abundant genetic diversity and strong codon usage bias were found by the haplotype diversity (1.000), average number of nucleotide differences (47.475), nucleotide diversity (0.20866), effective number of codons (44.526), codon bias index (0.559) and scaled Chi-square (0.779). The predicated secondary structure composition of CsUB protein had about 32.89% extended strands, 36.84% random colis, 15.79% alpha helixes and 14.47% beta turns. Subcellular localization analysis showed that CsUB protein of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane occupied about 47.80, 26.10, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that CsUB gene was highly conserved during evolution and belonged to ubiquitin gene family. The results might provide some fundamental data for further studies on expressed characteristics and physiological functions of CsUB gene.Key words: Chilo suppressalis Walker, ubiquitin, gene cloning, bioinformatics
Hepcidin and iron homeostasis
2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Confinement-induced phonon softening and hardening in Sb2Te3 thin films
Scaling effects in Sesqui-chalcogenides are of major interest to understand and optimize their performance in heavily scaled applications, including topological insulators and phase-change devices. A combined experimental and theoretical study is presented for molecular beam epitaxy-grown films of antimony-telluride (Sb2Te3). Structural,vibrational, optical, and bonding properties upon varying confinement are studied for thicknesses ranging from 1.3 to 56 nm. In ultrathin films, the low-frequency coherent phonons of A(1g)(1) symmetry are softened compared to the bulk (64.5 cm(-1) at 1.3 nm compared to 68 cm(-1) at 55.8 nm). A concomitant increase of the high-frequency A(1g)(2) Raman mode is seen. X-ray diffraction analyses unravel an accompanying out of plane stretch by 5%, mainly stemming from an increase in the Te-Te gap. This conclusion is supported by density functional theory slab models, which reveal a significant dependency of chemical bonding on film thickness. Changes in atomic arrangement, vibrational frequencies, and bonding extend over a thickness range much larger than observed for other material classes. The finding of these unexpectedly pronounced thickness-dependent effects in quasi-2D material Sb2Te3 allows tuning of the film properties with thickness. The results are discussed in the context of a novel bond-type, characterized by a competition between electron localization and delocalization
Chemical characterization of PM2.5 from a southern coastal city of China:applications of modeling and chemical tracers in demonstrationof regional transport
An intensive sampling campaign of airborne fine particles (PM2.5) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city
Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l-1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the Kubelka–Munk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid water
Evidence for Anthropogenic Surface Loading as Trigger Mechanism of the 2008 Wenchuan Earthquake
Two and a half years prior to China's M7.9 Wenchuan earthquake of May 2008,
at least 300 million metric tons of water accumulated with additional seasonal
water level changes in the Minjiang River Valley at the eastern margin of the
Longmen Shan. This article shows that static surface loading in the Zipingpu
water reservoir induced Coulomb failure stresses on the nearby Beichuan thrust
fault system at <17km depth. Triggering stresses exceeded levels of daily lunar
and solar tides and perturbed a fault area measuring 416+/-96km^2. These stress
perturbations, in turn, likely advanced the clock of the mainshock and directed
the initial rupture propagation upward towards the reservoir on the
"Coulomb-like" Beichuan fault with rate-and-state dependent frictional
behavior. Static triggering perturbations produced up to 60 years (0.6%) of
equivalent tectonic loading, and show strong correlations to the coseismic
slip. Moreover, correlations between clock advancement and coseismic slip,
observed during the mainshock beneath the reservoir, are strongest for a longer
seismic cycle (10kyr) of M>7 earthquakes. Finally, the daily event rate of the
micro-seismicity (M>0.5) correlates well with the static stress perturbations,
indicating destabilization.Comment: 22 pages, 4 figures, 3 table
- …