17 research outputs found

    Highly multiplexed immune repertoire sequencing links multiple lymphocyte classes with severity of response to COVID-19

    Get PDF
    BACKGROUND: Disease progression of subjects with coronavirus disease 2019 (COVID-19) varies dramatically. Understanding the various types of immune response to SARS-CoV-2 is critical for better clinical management of coronavirus outbreaks and to potentially improve future therapies. Disease dynamics can be characterized by deciphering the adaptive immune response. METHODS: In this cross-sectional study we analyzed 117 peripheral blood immune repertoires from healthy controls and subjects with mild to severe COVID-19 disease to elucidate the interplay between B and T cells. We used an immune repertoire Primer Extension Target Enrichment method (immunoPETE) to sequence simultaneously human leukocyte antigen (HLA) restricted T cell receptor beta chain (TRB) and unrestricted T cell receptor delta chain (TRD) and immunoglobulin heavy chain (IgH) immune receptor repertoires. The distribution was analyzed of TRB, TRD and IgH clones between healthy and COVID-19 infected subjects. Using McFadden's Adjusted R2 variables were examined for a predictive model. The aim of this study is to analyze the influence of the adaptive immune repertoire on the severity of the disease (value on the World Health Organization Clinical Progression Scale) in COVID-19. FINDINGS: Combining clinical metadata with clonotypes of three immune receptor heavy chains (TRB, TRD, and IgH), we found significant associations between COVID-19 disease severity groups and immune receptor sequences of B and T cell compartments. Logistic regression showed an increase in shared IgH clonal types and decrease of TRD in subjects with severe COVID-19. The probability of finding shared clones of TRD clonal types was highest in healthy subjects (controls). Some specific TRB clones seems to be present in severe COVID-19 (Figure S7b). The most informative models (McFadden´s Adjusted R2=0.141) linked disease severity with immune repertoire measures across all three cell types, as well as receptor-specific cell counts, highlighting the importance of multiple lymphocyte classes in disease progression. INTERPRETATION: Adaptive immune receptor peripheral blood repertoire measures are associated with COVID-19 disease severity

    Electrically tuned nonlinearity

    No full text
    The demonstration of broadband, electrically tunable third-order nonlinear optical responses in graphene is promising for a host of nonlinear optical applications.Peer reviewe

    Electrically tuned nonlinearity

    No full text

    Illumination of cell cycle progression by multi-fluorescent sensing system

    No full text
    Abstract Multi-fluorescent imaging of cell cycle progression is essential for the study of cell proliferation in vitro and in vivo. However, there remain challenges, particularly to image cell cycle progression in living cell with available imaging techniques due to lacking the suitable probe. Here, we design a triple fluorescent sensors system making the cell cycle progression visible. Multi-fluorescent sensor shows the proliferating or proliferated cells with different colors. We thus generate the construct and adenovirus to probe cell cycle progression in living cell lines and primary cardiomyocytes. Furthermore, we create the knock-in transgenic mouse to monitor cell cycle progression in vivo. Together, the system can be applied to investigate cell proliferation or cell cycle progression in living cells and animals

    Selection of adsorbents for treatment of leachate: batch studies of simultaneous adsorption of heavy metals

    No full text
    The simultaneous adsorption of copper (Cu), cadmium (Cd), nickel (Ni), and lead (Pb) ions from spiked deionized water and spiked leachate onto natural materials (peat A and B), by-product or waste materials (carbon-containing ash, paper pellets, pine bark, and semi-coke), and synthetic materials (based on urea-formaldehyde resins, called blue and red adsorbents) or mixtures thereof was investigated. The adsorbents that gave the highest metal removal efficiencies were peat A, a mixture of peat B and carbon-containing ash, and a mixture of peat A and blue. At an initial concentration of 5 mg/l for each metal, the removal of each species of metal ion from spiked water and spiked leachate solutions was very good (> 90%) and good (> 75%), respectively. When the initial concentration of each metal in the solutions was twenty times higher (100 mg/l), there was a noticeable decrease in the removal efficiency of Cu2+, Cd2+, and Ni2+, but not of Pb2+. Langmuir monolayer adsorption capacities, q(m), on peat A were found to be 0.57, 0.37, and 0.36 mmol/g for Pb2+, Cd2+, and Ni2+, respectively. The order of metal adsorption capacity on peat A was the same in the case of competitive multimetal adsorption conditions as it was for single-element adsorption, namely Pb2+ > Cd2+ a parts per thousand yen Ni2+. The results show that peat alone (an inexpensive adsorbent) is a good adsorbent for heavy metal ions
    corecore