12,126 research outputs found

    GG: A domain involved in phage LTF apparatus and implicated in human MEB and non-syndromic hearing loss diseases

    Get PDF
    AbstractHere, we report the identification of a novel domain ā€“ GG (domain in KIAA1199, FAM3, POMGnT1 and Tmem2 proteins, with two well-conserved glycine residues), present in eukaryotic FAM3 superfamily (FAM3A, FAM3B, FAM3C and FAM3D), POMGnT1 (protein O-linked mannose Ī²-1,2-N-acetylglucosaminyltransferase), TEM2 proteins as well as phage gp35 proteins. GG domain has been revealed to be implicated in muscleā€“eyeā€“brain disease and non-syndromic hearing loss. The presence of GG domain in Bacteriophage gp35 hinge connector of long tail fiber might reflect the horizontal gene transfer from organisms. And we proposed that GG domain might function as important structural element in phage LTF

    Structural dynamic response analysis on structure under tsunami bore impact

    Get PDF
    The forefront of the tsunami bore has extremely strong turbulent intensity, vorticity, and impact force. It generates tremendous impact effect on the coastal structures, which is the direct reason of the damage and destruction of the structures. On the basis of the computational fluid dynamic theory, this paper applied fluid volume method to capture the free surface motion of the tsunami waves and developed a 3D wave numerical model of an experiment of dam-break tsunami bore impact on a structure. The effectiveness of the model was also validated. The model was then applied to numerically analyze the dynamic impact effect of a tsunami bore on the structure of a full-scale reinforced concrete frame. It resolved the dynamic impact force of the tsunami bore on the structure and their interaction process. This study also employed finite element analysis to compare the static and dynamic response of the frame structure under the impact effect of the tsunami bore. The structural vibration characteristic and dynamic magnification factor of the structure under tsunami bore impact are confirmed, which could provide a reference for the design of anti-tsunami buildings

    Self-Calibrated Cross Attention Network for Few-Shot Segmentation

    Full text link
    The key to the success of few-shot segmentation (FSS) lies in how to effectively utilize support samples. Most solutions compress support foreground (FG) features into prototypes, but lose some spatial details. Instead, others use cross attention to fuse query features with uncompressed support FG. Query FG could be fused with support FG, however, query background (BG) cannot find matched BG features in support FG, yet inevitably integrates dissimilar features. Besides, as both query FG and BG are combined with support FG, they get entangled, thereby leading to ineffective segmentation. To cope with these issues, we design a self-calibrated cross attention (SCCA) block. For efficient patch-based attention, query and support features are firstly split into patches. Then, we design a patch alignment module to align each query patch with its most similar support patch for better cross attention. Specifically, SCCA takes a query patch as Q, and groups the patches from the same query image and the aligned patches from the support image as K&V. In this way, the query BG features are fused with matched BG features (from query patches), and thus the aforementioned issues will be mitigated. Moreover, when calculating SCCA, we design a scaled-cosine mechanism to better utilize the support features for similarity calculation. Extensive experiments conducted on PASCAL-5^i and COCO-20^i demonstrate the superiority of our model, e.g., the mIoU score under 5-shot setting on COCO-20^i is 5.6%+ better than previous state-of-the-arts. The code is available at https://github.com/Sam1224/SCCAN.Comment: This paper is accepted by ICCV'2

    Synthesis and evaluation of a novel fluorescent sensor based on hexahomotrioxacalix[3]arene for ZnĀ²+ and CdĀ²+

    Get PDF
    A novel type of selective and sensitive fluorescent sensor having triazole rings as the binding sites on the lower rim of a hexahomotrioxacalix[3]arene scaffold in a cone conformation is reported. This sensor has desirable properties for practical applications, including selectivity for detecting ZnĀ²āŗ and CdĀ²āŗ in the presence of excess competing metal ions at low ion concentration or as a fluorescence enhancement type chemosensor due to the cavity of calixarene changing from a ā€˜flattened-coneā€™ to a more-upright form and inhibition of PET. In contrast, the results suggested that receptor 1 is highly sensitive and selective for CuĀ²āŗ and FeĀ³āŗ as a fluorescence quenching type chemosensor due to the photoinduced electron transfer (PET) or heavy atom effect

    In-situ cosmogenic <sup>36</sup>Cl denudation rates of carbonates in Guizhou karst area

    Get PDF
    This study quantifies surface denudation of carbonate rocks by the first application of in-situ cosmogenic &lt;sup&gt;36&lt;/sup&gt;Cl in China. Concentrations of natural Cl and in-situ cosmogenic &lt;sup&gt;36&lt;/sup&gt;Cl in bare carbonates from Guizhou karst areas were measured with isotope dilution by accelerator mass spectrometer. The Cl concentration varied from 16 to 206 ppm. The &lt;sup&gt;36&lt;/sup&gt;Cl concentrations were in range of (0.8ā€“2.4)Ɨ106 atom gāˆ’1, resulting in total denudation rates of 20ā€“50 mm kaāˆ’1 that averaged over a 104ā€“105 a timescale. The &lt;sup&gt;36&lt;/sup&gt;Cl-denudation rates showed roughly a negative correlation with the local mean temperature. This preliminary observation may suggest the variations of proportions of chemical weathering and physical erosion in denudation process, depending upon local climatic conditions

    Quantum mechanics of fermion confined to a curved surface in Foldy-Wouthuysen representation

    Full text link
    In Foldy-Wouthuysen representation, we deduce the effective quantum mechanics for a particle confined to a curved surface by using the thin-layer quantization scheme. We find that the spin effect caused by confined potential as the results of relativistic correction in the non-relativistic limit. Furthermore, the spin connection appeared in curved surface which depends on curvature contributes a Zeeman-like gap in the relativistic correction term. In addition, the confined potential also induces a curvature-independent energy shift, which is from the zitterbewegung effect. As an example, we apply the effective Hamiltonian to torus surface, in which we obtain expectantly the spin effects related to confined potential. Those results directly demonstrate the scaling of the uncommutation of the non-relativistic limit and the thin-layer quantization formalis
    • ā€¦
    corecore