312 research outputs found

    Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    Get PDF
    Deflectometric methods have existed for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a test surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection delfectometry and presents a straight-forward relation between height and phase. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected on a LCD screen, resulting in a significant reduction in capture time over established method. Assuming the whole system has been pre-calibrated, during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to spatial geometrical relation between LCD screen and CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes

    Multivariate Time Series Anomaly Detection: Fancy Algorithms and Flawed Evaluation Methodology

    Full text link
    Multivariate Time Series (MVTS) anomaly detection is a long-standing and challenging research topic that has attracted tremendous research effort from both industry and academia recently. However, a careful study of the literature makes us realize that 1) the community is active but not as organized as other sibling machine learning communities such as Computer Vision (CV) and Natural Language Processing (NLP), and 2) most proposed solutions are evaluated using either inappropriate or highly flawed protocols, with an apparent lack of scientific foundation. So flawed is one very popular protocol, the so-called \pa protocol, that a random guess can be shown to systematically outperform \emph{all} algorithms developed so far. In this paper, we review and evaluate many recent algorithms using more robust protocols and discuss how a normally good protocol may have weaknesses in the context of MVTS anomaly detection and how to mitigate them. We also share our concerns about benchmark datasets, experiment design and evaluation methodology we observe in many works. Furthermore, we propose a simple, yet challenging, baseline algorithm based on Principal Components Analysis (PCA) that surprisingly outperforms many recent Deep Learning (DL) based approaches on popular benchmark datasets. The main objective of this work is to stimulate more effort towards important aspects of the research such as data, experiment design, evaluation methodology and result interpretability, instead of putting the highest weight on the design of increasingly more complex and "fancier" algorithms

    A Benchmarking Study of Matching Algorithms for Knowledge Graph Entity Alignment

    Full text link
    How to identify those equivalent entities between knowledge graphs (KGs), which is called Entity Alignment (EA), is a long-standing challenge. So far, many methods have been proposed, with recent focus on leveraging Deep Learning to solve this problem. However, we observe that most of the efforts has been paid to having better representation of entities, rather than improving entity matching from the learned representations. In fact, how to efficiently infer the entity pairs from this similarity matrix, which is essentially a matching problem, has been largely ignored by the community. Motivated by this observation, we conduct an in-depth analysis on existing algorithms that are particularly designed for solving this matching problem, and propose a novel matching method, named Bidirectional Matching (BMat). Our extensive experimental results on public datasets indicate that there is currently no single silver bullet solution for EA. In other words, different classes of entity similarity estimation may require different matching algorithms to reach the best EA results for each class. We finally conclude that using PARIS, the state-of-the-art EA approach, with BMat gives the best combination in terms of EA performance and the algorithm's time and space complexity.Comment: 11 pages, 1 figure, 7 table
    • …
    corecore