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ABSTRACT 

Deflectometric methods have existed for more than a decade for slope measurement of specular freeform surfaces 
through utilization of the deformation of a sample pattern after reflection from a test surface. Usually, these approaches 
require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, 
which leads to some complexity for the whole measuring process.  

This paper proposes a new mathematical measurement model for measuring topography information of freeform 
specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection 
delfectometry and presents a straight-forward relation between height and phase. This method only requires one direction 
of horizontal or vertical sinusoidal fringe patterns to be projected on a LCD screen, resulting in a significant reduction in 
capture time over established method. Assuming the whole system has been pre-calibrated, during the measurement 
process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD 
camera. The reference phase can be solved according to spatial geometrical relation between LCD screen and CCD 
camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. 
Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected 
surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate 
topography information for freeform and structured specular surfaces without integration and reconstruction processes.   

Keywords: absolute surface measurement, active fringe reflection deflectometry, freeform specular measurement   

1 Introduction 

Rapid and precise form measurement for freeform and structured specular surfaces is a common task in optics, aerospace 
and MEMS/NEMS fields. For precisely characterising these components, slope and height measurement via optical 
methods have widely been investigated within recent years. 

It is known that stereo of phase measuring deflectometry (PMD) proposed by Knauer et al. 1 can measure the three 
dimensional shape of a freeform specular object. This method is to obtain slope information for a smooth object surface, 
and then to integrate these slope data into surface topography via some integration algorithms2, 3. For this approach, 
topography accuracy of one point is related to adjacent points due to integration operation. And regularity of surface has 
to be carefully considered.4, 5 

Another method, reflection grating photogrammetry (RGP) based on ray intersection was put forward by Petz and 
Tutsch6, which can measure non-continuous specular surfaces. The tested points for this method are independent from 
the others since it employs ray intersection instead of integration. On the basis of this method, Yong L.X et al.7 published 
fringe reflection photogrammetry (FRP) method, which imports constraint bundle adjustment into RGP.  Though 
absolute coordinates of non-continuous specular surfaces can be obtained with these two methods, they do not give a 
direct expression between height and phase information and needs spatial geometry computation. 
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Later, Hong W.Z8 proposed an expression between captured phase and height information for an measured surface, while 
this method requires an ultra-precision machined reference surface to be put parallel to LCD screen and did not exactly 
state height-phase relation. In addition, all these methods require and direction fringe patterns to be projected on a 

LCD screen to extract the coded phase information. 

Importing a virtual reference mirror in the model of FRP7, a straight-forward height-phase mathematical model is put 
forward in this paper. When the whole system is calibrated, this proposed method needs only one direction fringe 
patterns and the height information can be directly calculated. An elaborate description will be stated in section 2. 
Simulation and experimental results are drawn in section 3. Section 4 gives a conclusion.  

2 Principle of proposed method 

Figure 1 shows arrangement of the modified active fringe reflection photogrammetry6, 7, where phase-shifting sinusoidal 
fringe patterns in only horizontal (or vertical direction) are displayed on a liquid crystal display (LCD) screen, virtual 
reference mirror locates at front of LCD monitor with a space of , LCD screen shifts along its axis with distance and 
the detected specular surface locates in the range of field depth of CCD camera. At each position for this LCD screen, 
sinusoidal patterns are respectively observed by a CCD camera via a reference mirror and the under-test freeform 
specular surface. 

 

Figure 1 Schematic setup of modified FRP 

If a pinhole projection is assumed for the imaging system, based on ray tracing technique of CCD camera, Figure 1 
depicts two rays of light, which are extracted from LCD screen and are reflected into the CCD camera via detected 
surface and reference mirror. These two different incident rays correspond to a same reflection light. Assuming the 
whole system has been pre-calibrated, the reference phase  can be solved according to spatial geometrical relation 

between LCD screen and CCD camera and the captured phase  can be unwrapped with a heterodyne technique 

and optimum frequency selection method.  

To simplify this presentation, a single pixel point is considered. Figure 2shows an orthographic view projected along the 
direction of sinusoidal fringe patterns. Distance between LCD locating at position 1and reference mirror is. The 
shifting distance is . Relative to the reference surface, the absolute distance of specular surface is defined as . 

Vectors and are the projected normal vectors of and . is the angle between projected incident line  

and normal vector of  reference mirror, and corresponds to an angle between projected incident ray and normal 

vector of reference surface. The period of sinusoidal fringe pattern is . 



 

 

Figure 2 Projection diagram of modified FRP 

From its geometrical relation, the following expression can be deduced.  

                                                              (1) 

                                                              (2) 

                                                        (3)

 

From the above formulas, a height expression can be represented as 

                                                  (4)
  

Equation 3 shows that height value can be directly calculated when captured phase, reference phase, distance from LCD 
to virtual reference surface and shifting distance are known. Furthermore, if the system has been calibrated, the reference 
mirror then can be put virtually at any position and reference phase can be solved previously according to spatial 
geometrical relation, which will be depicted below. In addition, Equation 3 also depicts only one direction captured and 
reference phase are needed. Therefore, once shifting distance and coded phase are measured, the absolute height data can 
be calculated. 

3 Analytical description of reference phase distribution 

Figure 3shows the detailed geometrical arrangement for analysing reference phase distribution in the CCD imaging 
frame . Supposing the system has been calibrated and the transformation matrix from LCD frames  to CCD frame 



 

 to be , which is expressed with homogeneous coordinates and can be divided into rotating matrix  and 

translating vector .  The virtual reference mirror  is located at the distance of from LCD screen frame . 

Assuming CCD internal parameter matrix is expressed as  and we define and axis of reference mirror coincide 

with the axis of LCD screen. Then transformation matrix from reference surface frame  to camera frame as

.  

 
Figure 3 Geometrical analysis of virtual reference phase 

To simplify this description, a single pixel point in CCD pixel plane is considered, whose physical coordinates in 
frame  is defined as 1. Tracing this pixel point , the reflected ray  going through CCD optical centre  and 

point  intersects at the point with the reference mirror. Based on reflection principle, the incident raywill 

intersect with LCD screen at point. is normal vector of point with respect to frame  ,which equals 

, and coordinates of point in the virtual reference frame can be expressed as 

                                                                               (5)
 

From geometry (Figure 3), intersection point in the virtual reference frame can be calculated using following 

equation: 

                                                                       (6)
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                                      (7)

 

 
 
                                                           
1 Throughout this paper, is position of point with respect to frame . represents coordinate of point along axis 

in frame .  is the rotation matrix rotating vectors from frame to . is the identity matrix, and is the 

matrix of zeros. 



 

Likewise, mirrored point 'Q can be solved: 
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Based on principle of mirror image, coordinates of source point Q in frame { }V  can be deduced as: 
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Then the captured reference phase of pixel pointM can be computed with this expression
QL
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, q is the frequency of fringe pattern along x  or y  direction in frame{ }L . 

 
Unite the equations above, the reference phase can be computed using the following equation  
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Equation (11) shows that once camera internal parameters and geometrical relation between LCD screen and CCD 
camera are known, the reference phase can be directly resolved. 

4 Simulation and Experiments 

This modified active reflection deflectometry is simulated based on light tracing and topography of a detected specular 

surface is measured to verify the theoretical analysis. In the simulation, a quadric surface
2 2

400 600 500

x y xy
z =− − − with 

measurement range [-25, 25,-25, 25] is generated to be a tested surface shown in Figure 4. For simplicity, the simulated 
surface is placed to be parallel to LCD screen and has a distance of 185mm from LCD monitor, which leads that only 
part of the position can be imaged into the camera. And the virtual reference surface is placed at the same position of 
detected specimen. During the simulation, horizontal fringe patterns with 23.76mm period are projected on the LCD 
monitor and random noises of 1% pixel position is added on the recorded fringe patterns. The shifting distance of LCD is 
set as 50mm. The transformation matrix between CCD camera and LCD screen is chosen as

0.8052 0.0048 0.593 175.2687

0..019 0.9996 0.0177 5.0766

0.5927 0.0255 0.805 166.6307

0 0 0 1

T

− −  − − =  −   
. This matrix is based on a practical geometrical relation between CCD and LCD. 

The main point of this CCD camera is[501.0226 517.5536], normalized focal is[2290.7 2291.2], and the distortion 



 

coefficient is 4 40.2532 0.0081 6.12 10 3.55 10 0− − − × ×  . Then, part of that quadric surface can be reconstructed 

according to the modified active reflection deflectometry method and reconstruction error is also shown in Figure 5, 
which verifies its implementation. 

 

 

Figure 4 Simulated ideal surface 

 

Figure 5 Reconstruction of simulated surface and reconstruction error 

The experimental result of testing a concave surface is presented. Figure 6 shows its setup. The diameter of this mirror is 
76.2mm and 50.8mm is for its aperture. The LCD screen is a 17-inch transistor liquid crystal display (TFT-LCD) 
configured at a resolution of 1280 1024× pixels and a square pixel of 0.264mm by side. Vertical sinusoidal fringe 
patterns of 23.76mm, 25.344mm and 31.68mm are generated on the LCD screen, which obeys the rule of optimum 
frequency selection. Four-step phase shifting algorithm is as well employed to each period fringe patterns. The under-test 
surface is located at the focal plane of CCD camera but is set at a random position. The virtual reference surface is placed 
parallel to LCD screen with 185mm away. The shifting distance of LCD screen is 51.9mm. One of the deformed fringe 
patterns captured by CCD camera is shown in Figure 6. Choosing 60% of the reconstructed data, reconstructed surface 
using the proposed method is shown in Figure 7(left) and right picture of Figure 7 gives a view of error distribution 
between measurement results and theoretical surface model, which is in the range of -0.2-0.2mm. The experimental work 
verifies the feasibility of proposed method, though accuracy is still needed to improve.  



 

 

Figure 6 Experimental setup (left) and obtained vertical frigne pattern(right) 

 
Figure 7 Reconstructed surface (left) and error distribution (right) 

5 Conclusions and Discussion 

In this paper, a modified method based on active fringe reflection deflectometry is presented to measure absolute 
topography value of specular surfaces.  Compared with previous approach, this method only requires one directional 
fringe patterns to be projected on the LCD screen by importing a virtual reference surface into the measurement process. 
This work as well gives a direct relationship between captured phase and height information and tells a mathematical 
expression of reference phase distribution in CCD camera pixel plane. Simulation results show that this method can get a 
good result and experimental work verifies its implementation, though experimental test reveals that unavoidable 
measurement errors of a real measurement system limits the accuracy for this method.  As regards future studies in this 
direction, combining this method with surface reconstruction algorithms, decreasing system errors should be devoted to 
improve measurement accuracy. 
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