University of Huddersfield

University of Huddersfield Repository

Ren, Hongyu, Jiang, Xiangqian, Gao, Feng and Zhang, Zonghua
Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

Original Citation

Ren, Hongyu, Jiang, Xiangqian, Gao, Feng and Zhang, Zonghua (2014) Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry. In: Interferometry XVII: Advanced Applications. Proceedings of SPIE, 9204 (9204). SPIE, San Diego, California, USA, 920408-1-920408-8. ISBN 9781628412314

This version is available at http://eprints.hud.ac.uk/24802/
The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

Absolute height measurement of specular surfaces with modified active fringe reflection deflectometry

Hongyu Ren ${ }^{\text {a }}$, Xiangqian Jiang ${ }^{\text {a }}$, Feng Gao ${ }^{\text {a }}$, Zhonghua Zhang ${ }^{\text {b }}$
${ }^{a}$ Centre for Precision Technologies, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
${ }^{\mathrm{b}}$ School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130, China
${ }^{\text {a }}$ Email: u1269268@hud.ac.uk

Abstract

Deflectometric methods have existed for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a test surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process.

This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection delfectometry and presents a straight-forward relation between height and phase. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected on a LCD screen, resulting in a significant reduction in capture time over established method. Assuming the whole system has been pre-calibrated, during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to spatial geometrical relation between LCD screen and CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

Keywords: absolute surface measurement, active fringe reflection deflectometry, freeform specular measurement

1 Introduction

Rapid and precise form measurement for freeform and structured specular surfaces is a common task in optics, aerospace and MEMS/NEMS fields. For precisely characterising these components, slope and height measurement via optical methods have widely been investigated within recent years.

It is known that stereo of phase measuring deflectometry (PMD) proposed by Knauer et al. ${ }^{1}$ can measure the three dimensional shape of a freeform specular object. This method is to obtain slope information for a smooth object surface, and then to integrate these slope data into surface topography via some integration algorithms ${ }^{2,3}$. For this approach, topography accuracy of one point is related to adjacent points due to integration operation. And regularity of surface has to be carefully considered. ${ }^{4,5}$

Another method, reflection grating photogrammetry (RGP) based on ray intersection was put forward by Petz and Tutsch ${ }^{6}$, which can measure non-continuous specular surfaces. The tested points for this method are independent from the others since it employs ray intersection instead of integration. On the basis of this method, Yong L.X et al. ${ }^{7}$ published fringe reflection photogrammetry (FRP) method, which imports constraint bundle adjustment into RGP. Though absolute coordinates of non-continuous specular surfaces can be obtained with these two methods, they do not give a direct expression between height and phase information and needs spatial geometry computation.

Later, Hong W. Z^{8} proposed an expression between captured phase and height information for an measured surface, while this method requires an ultra-precision machined reference surface to be put parallel to LCD screen and did not exactly state height-phase relation. In addition, all these methods require \boldsymbol{x} and \boldsymbol{y} direction fringe patterns to be projected on a LCD screen to extract the coded phase information.

Importing a virtual reference mirror in the model of FRP^{7}, a straight-forward height-phase mathematical model is put forward in this paper. When the whole system is calibrated, this proposed method needs only one direction fringe patterns and the height information can be directly calculated. An elaborate description will be stated in section 2. Simulation and experimental results are drawn in section 3. Section 4 gives a conclusion.

2 Principle of proposed method

Figure 1 shows arrangement of the modified active fringe reflection photogrammetry ${ }^{6,7}$, where phase-shifting sinusoidal fringe patterns in only horizontal (or vertical direction) are displayed on a liquid crystal display (LCD) screen, virtual reference mirror locates at front of LCD monitor with a space of , LCD screen shifts along its axis with Δd distance and the detected specular surface locates in the range of field depth of CCD camera. At each position for this LCD screen, sinusoidal patterns are respectively observed by a CCD camera via a reference mirror and the under-test freeform specular surface.

Figure 1 Schematic setup of modified FRP
If a pinhole projection is assumed for the imaging system, based on ray tracing technique of CCD camera, Figure 1 depicts two rays of light, which are extracted from LCD screen and are reflected into the CCD camera via detected surface and reference mirror. These two different incident rays correspond to a same reflection light. Assuming the whole system has been pre-calibrated, the reference phase $\phi_{r 1}, \phi_{r 2}$ can be solved according to spatial geometrical relation between LCD screen and CCD camera and the captured phase $\phi_{m 1}, \phi_{m 2}$ can be unwrapped with a heterodyne technique and optimum frequency selection method.

To simplify this presentation, a single pixel point is considered. Figure 2shows an orthographic view projected along the direction of sinusoidal fringe patterns. Distance between LCD locating at position 1and reference mirror is \boldsymbol{d}. The shifting distance is Δd. Relative to the reference surface, the absolute distance of specular surface is defined as \boldsymbol{h}. Vectors $\overrightarrow{\boldsymbol{n}}_{r(p)}$ and $\overrightarrow{\boldsymbol{n}}_{\boldsymbol{m}(p)}$ are the projected normal vectors of $\overrightarrow{\boldsymbol{n}}_{r}$ and $\overrightarrow{\boldsymbol{n}}_{\boldsymbol{m}} . \boldsymbol{\theta}$ is the angle between projected incident line \boldsymbol{I}_{r} and normal vector of reference mirror, and $\boldsymbol{\theta}+\boldsymbol{\varphi}$ corresponds to an angle between projected incident ray l_{m} and normal vector of reference surface. The period of sinusoidal fringe pattern is \boldsymbol{q}.

Figure 2 Projection diagram of modified FRP
From its geometrical relation, the following expression can be deduced.

$$
\left\{\begin{array}{c}
\left(\phi_{r 1}-\phi_{r 2}\right) q / 2 \pi=\Delta d \tan \theta \tag{1}\\
\left(\phi_{m 1}-\phi_{m 2}\right) q / 2 \pi=\Delta d \tan (\theta+\varphi)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\left(\phi_{r 1}-\phi_{r 2}\right) q / 2 \pi=\Delta d \tan \theta \tag{2}\\
\left(\phi_{m 1}-\phi_{m 2}\right) q / 2 \pi=\Delta d \tan (\theta+\varphi)
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
(d+h) \tan \theta+\Delta l=(d-h) \tan (\theta+\varphi) \tag{3}\\
\left(\phi_{r 1}-\phi_{m 1}\right) q / 2 \pi=\Delta l
\end{array}\right.
$$

From the above formulas, a height expression can be represented as

$$
\begin{equation*}
h=\frac{\Delta d\left(\phi_{m 1}-\phi_{r 1}\right)-d\left[\left(\phi_{r 1}-\phi_{r 2}\right)-\left(\phi_{m 1}-\phi_{m 2}\right)\right]}{\left(\phi_{m 1}-\phi_{m 2}\right)+\left(\phi_{r 1}-\phi_{r 2}\right)} \tag{4}
\end{equation*}
$$

Equation 3 shows that height value can be directly calculated when captured phase, reference phase, distance from LCD to virtual reference surface and shifting distance are known. Furthermore, if the system has been calibrated, the reference mirror then can be put virtually at any position and reference phase can be solved previously according to spatial geometrical relation, which will be depicted below. In addition, Equation 3 also depicts only one direction captured and reference phase are needed. Therefore, once shifting distance and coded phase are measured, the absolute height data can be calculated.

3 Analytical description of reference phase distribution

Figure 3shows the detailed geometrical arrangement for analysing reference phase distribution in the CCD imaging frame $\{C\}$. Supposing the system has been calibrated and the transformation matrix from LCD frames $\{L\}$ to CCD frame
$\{C\}$ to be T, which is expressed with homogeneous coordinates and can be divided into rotating matrix ${ }_{L}^{C} \mathbf{R}$ and translating vector T_{1}. The virtual reference mirror $\{V\}$ is located at the distance of d from LCD screen frame $\{L\}$. Assuming CCD internal parameter matrix is expressed as \boldsymbol{A} and we define \boldsymbol{x} and \boldsymbol{y} axis of reference mirror coincide with the axis of LCD screen. Then transformation matrix from reference surface frame $\{V\}$ to camera frame $\{C\}$ as $T_{r}=\left[\begin{array}{ccccc}{ }_{L}^{C} \mathbf{R} & T\left[\begin{array}{llll}0 & 0 & d & 1\end{array}\right]^{\prime} \\ \mathbf{0}_{\mathbf{1 \times 3}} & & & & \end{array}\right]$.

Figure 3 Geometrical analysis of virtual reference phase
To simplify this description, a single pixel point \boldsymbol{M} in CCD pixel plane is considered, whose physical coordinates in frame $\{C\}$ is defined as C_{M}. Tracing this pixel point \boldsymbol{M}, the reflected ray r_{f} going through CCD optical centre O_{c} and point \boldsymbol{M} intersects at the point \boldsymbol{P} with the reference mirror. Based on reflection principle, the incident ray $\boldsymbol{r}_{\boldsymbol{i}}$ will intersect with LCD screen at point $Q \cdot \vec{n}_{r}$ is normal vector of point P with respect to frame $\{V\}$, which equals $\left[\begin{array}{lll}0 & \mathbf{0} & -\mathbf{1}\end{array}\right]$, and coordinates of point M in the virtual reference frame $\{V\}$ can be expressed as

$$
\left[\begin{array}{c}
V_{M} \tag{5}\\
1
\end{array}\right]=T_{r}^{\prime}\left[\begin{array}{c}
C_{M} \\
1
\end{array}\right]
$$

From geometry (Figure 3), intersection point P in the virtual reference frame $\{\boldsymbol{V}\}$ can be calculated using following equation:

$$
\begin{gather*}
V_{M}-V_{O_{c}}=k_{1}\left(V_{O_{c}}-V_{P}\right) \tag{6}\\
V_{P}=V_{O_{c}}-\frac{V_{M}-V_{O_{\epsilon}}}{k_{1}}=\left(1+\frac{1}{k_{1}}\right) V_{O_{c}}-\frac{1}{k_{1}} V_{M}, k_{1}=\frac{V_{M}(z)-V_{O_{\epsilon}}(z)}{V_{M}(z)} \tag{7}
\end{gather*}
$$

[^0]Likewise, mirrored point Q^{\prime} can be solved:

$$
\begin{gather*}
V_{M}-V_{O_{c}}=k_{2}\left(V_{O_{c}}-V_{Q^{\prime}}\right), \text { where } V_{Q^{\prime}}(z)=d \tag{8}\\
V_{Q^{\prime}}=V_{O_{c}}-\frac{V_{M}-V_{O_{c}}}{k_{2}}=\left(+\frac{1}{k_{2}}\right) V_{O_{c}} \frac{1}{k_{2}} V_{M}, \text { where } k_{2}=\frac{V_{M}(z)-V_{O_{c}}(z)}{V_{O_{c}}(z)-d} \tag{9}
\end{gather*}
$$

Based on principle of mirror image, coordinates of source point Q in frame $\{V\}$ can be deduced as:

$$
\begin{equation*}
V_{Q}=\left(I_{3}-2 V_{\mathbf{n}} V_{\mathbf{n}}^{T}\right) V_{Q} \tag{10}
\end{equation*}
$$

Then the captured reference phase of pixel point M can be computed with this expression $\phi=\frac{L_{Q}}{q}$, where $L_{Q}=\left[\begin{array}{cc}\mathbf{I}_{1 \times 3} & d \cdot \overrightarrow{n_{r}} \\ \mathbf{0}_{1 \times 3} & 1\end{array}\right] V_{Q}, q$ is the frequency of fringe pattern along x or y direction in frame $\{L\}$.

Unite the equations above, the reference phase can be computed using the following equation

$$
\begin{align*}
& L_{Q}=\left[\begin{array}{cc}
\mathbf{I}_{1 \times 3} & d \cdot V_{\mathbf{n}} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{cc}
I_{3}-2 V_{\mathbf{n}} V_{\mathbf{n}}{ }^{T} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]\left[\begin{array}{c}
\left(1+\frac{1}{k_{2}}\right) V_{O_{c}}-\frac{1}{k_{2}} V_{M} \\
1
\end{array}\right] \\
& {\left[\begin{array}{c}
V_{M} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
{ }_{L}^{C} \mathbf{R} & T\left[\begin{array}{llll}
0 & 0 & d & 1
\end{array}\right]^{\prime}
\end{array}\right]^{\prime}\left[\begin{array}{c}
C_{M} \\
1
\end{array}\right] \quad, \text { where } k_{2}=\frac{V_{M}(z)-V_{O_{c}}(z)}{V_{O_{c}}(z)-d}} \\
& {\left[\begin{array}{c}
V_{O_{c}} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
C \\
L & \mathbf{R} & T\left[\begin{array}{llll}
0 & 0 & d & 1
\end{array}\right]^{\prime} \\
\mathbf{0}_{1 \times 3} & & &
\end{array} c_{\mathbf{0}_{3 \times 1}}^{1}\right]} \tag{11}\\
& \phi=\frac{L_{Q}}{q}
\end{align*}
$$

Equation (11) shows that once camera internal parameters and geometrical relation between LCD screen and CCD camera are known, the reference phase can be directly resolved.

4 Simulation and Experiments

This modified active reflection deflectometry is simulated based on light tracing and topography of a detected specular surface is measured to verify the theoretical analysis. In the simulation, a quadric surface $z=\frac{x^{2}}{400} \frac{y^{2}}{600} \frac{x y}{500}$ with measurement range $[-25,25,-25,25]$ is generated to be a tested surface shown in Figure 4. For simplicity, the simulated surface is placed to be parallel to LCD screen and has a distance of 185 mm from LCD monitor, which leads that only part of the position can be imaged into the camera. And the virtual reference surface is placed at the same position of detected specimen. During the simulation, horizontal fringe patterns with 23.76 mm period are projected on the LCD monitor and random noises of 1% pixel position is added on the recorded fringe patterns. The shifting distance of LCD is set as 50 mm . The transformation matrix between CCD camera and LCD screen is chosen as
$T=\left[\begin{array}{cccc}0.8052 & -0.0048 & 0.593 & -175.2687 \\ 0 . .019 & 0.9996 & -0.0177 & -5.0766 \\ -0.5927 & 0.0255 & 0.805 & 166.6307 \\ 0 & 0 & 0 & 1\end{array}\right]$. This matrix is based on a practical geometrical relation between CCD and LCD.

The main point of this CCD camera is [501.0226 517.5536], normalized focal is [2290.7 2291.2] , and the distortion
coefficient is $\left[\begin{array}{lllll}-0.2532 & 0.0081 & 6.12 \times 10^{-4} & 3.55 \times 10^{-4} & 0\end{array}\right]$. Then, part of that quadric surface can be reconstructed according to the modified active reflection deflectometry method and reconstruction error is also shown in Figure 5, which verifies its implementation.

Figure 4 Simulated ideal surface

Figure 5 Reconstruction of simulated surface and reconstruction error
The experimental result of testing a concave surface is presented. Figure $\mathbf{6}$ shows its setup. The diameter of this mirror is 76.2 mm and 50.8 mm is for its aperture. The LCD screen is a 17 -inch transistor liquid crystal display (TFT-LCD) configured at a resolution of 1280×1024 pixels and a square pixel of 0.264 mm by side. Vertical sinusoidal fringe patterns of $23.76 \mathrm{~mm}, 25.344 \mathrm{~mm}$ and 31.68 mm are generated on the LCD screen, which obeys the rule of optimum frequency selection. Four-step phase shifting algorithm is as well employed to each period fringe patterns. The under-test surface is located at the focal plane of CCD camera but is set at a random position. The virtual reference surface is placed parallel to LCD screen with 185 mm away. The shifting distance of LCD screen is 51.9 mm . One of the deformed fringe patterns captured by CCD camera is shown in Figure 6. Choosing 60\% of the reconstructed data, reconstructed surface using the proposed method is shown in Figure 7(left) and right picture of Figure 7 gives a view of error distribution between measurement results and theoretical surface model, which is in the range of $-0.2-0.2 \mathrm{~mm}$. The experimental work verifies the feasibility of proposed method, though accuracy is still needed to improve.

Figure 6 Experimental setup (left) and obtained vertical frigne pattern(right)

Figure 7 Reconstructed surface (left) and error distribution (right)

5 Conclusions and Discussion

In this paper, a modified method based on active fringe reflection deflectometry is presented to measure absolute topography value of specular surfaces. Compared with previous approach, this method only requires one directional fringe patterns to be projected on the LCD screen by importing a virtual reference surface into the measurement process. This work as well gives a direct relationship between captured phase and height information and tells a mathematical expression of reference phase distribution in CCD camera pixel plane. Simulation results show that this method can get a good result and experimental work verifies its implementation, though experimental test reveals that unavoidable measurement errors of a real measurement system limits the accuracy for this method. As regards future studies in this direction, combining this method with surface reconstruction algorithms, decreasing system errors should be devoted to improve measurement accuracy.

6 Acknowledge

The author gratefully acknowledges the supervisors and other staffs of the Centre for Precision Technologies in Huddersfield University of UK and Hebei Science and Industry University of China.

REFERENCES

[1]M. C. Knauer, J. Kaminski and G. Hausler, 'Phase measuring deflectometry: a new approach to measure specular freeform surfaces' (2004).
[2]S. Ettl, J. Kaminski, M. C. Knauer and G. Häusler, 'Shape reconstruction from gradient data', Appl. Opt., 47, 12 (2008).
[3]J. K. S Lowitzsch, G Häusler, Shape reconstruction of 3D objects from noisy slope data, in, DGao proceedings, vol. 106, A22, 2005).
[4]A. Agrawal, R. Raskar and R. Chellappa, What Is the Range of Surface Reconstructions from a Gradient Field?, in A. Leonardis, H. Bischof and A. Pinz, eds., Computer Vision - ECCV 2006, vol. 3951, pp. 578-591: Springer Berlin Heidelberg, 2006).
[5]J. Balzer and S. Werling, 'Principles of Shape from Specular Reflection', Measurement, 43, 10 (2010).
[6]M. Petz and R. Tutsch, Reflection grating photogrammetry: a technique for absolute shape measurement of specular free-form surfaces, in, Proc. of SPIE, vol. 5869, pp. 58691D-58691D, 2005).
[7]Y.-L. Xiao, X. Su, W. Chen and Y. Liu, 'Three-dimensional shape measurement of aspheric mirrors with fringe reflection photogrammetry', Appl. Opt., 51, 4 (2012).
[8]H. Zhang, L. Ji, S. Liu, S. Li, S. Han and X. Zhang, 'Three-dimensional shape measurement of a highly reflected, specular surface with structured light method', Appl. Opt., 51, 31 (2012).

[^0]: ${ }^{1}$ Throughout this paper, X_{P} is position of point P with respect to frame $\{X\} . X_{P}(z)$ represents coordinate of point P along z axis in frame $\{X\} \cdot{ }_{W}^{X} \mathbf{R}$ is the rotation matrix rotating vectors from frame $\{W\}$ to $\{X\} . \mathbf{I}_{\boldsymbol{n}}$ is the $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix, and $\mathbf{0}_{\boldsymbol{m} \times \boldsymbol{n}}$ is the $\boldsymbol{m} \times \boldsymbol{n}$ matrix of zeros.

