44 research outputs found

    Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori

    Get PDF
    Using a genome-wide oligonucleotide microarray, gene expression was surveyed in multiple silkworm tissues on day 3 of the fifth instar, providing a new resource for annotating the silkworm genome

    Management of granulomatous lobular mastitis: an international multidisciplinary consensus (2021 edition)

    Get PDF
    Granulomatous lobular mastitis (GLM) is a rare and chronic benign inflammatory disease of the breast. Difficulties exist in the management of GLM for many front-line surgeons and medical specialists who care for patients with inflammatory disorders of the breast. This consensus is summarized to establish evidence-based recommendations for the management of GLM. Literature was reviewed using PubMed from January 1, 1971 to July 31, 2020. Sixty-six international experienced multidisciplinary experts from 11 countries or regions were invited to review the evidence. Levels of evidence were determined using the American College of Physicians grading system, and recommendations were discussed until consensus. Experts discussed and concluded 30 recommendations on historical definitions, etiology and predisposing factors, diagnosis criteria, treatment, clinical stages, relapse and recurrence of GLM. GLM was recommended as a widely accepted definition. In addition, this consensus introduced a new clinical stages and management algorithm for GLM to provide individual treatment strategies. In conclusion, diagnosis of GLM depends on a combination of history, clinical manifestations, imaging examinations, laboratory examinations and pathology. The approach to treatment of GLM should be applied according to the different clinical stage of GLM. This evidence-based consensus would be valuable to assist front-line surgeons and medical specialists in the optimal management of GLM.Improving the Ability of Diagnosis and Treatment of Difficult Disease

    Incidence of chemotherapy-induced amenorrhea associated with epirubicin, docetaxel and navelbine in younger breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rates of chemotherapy-induced amenorrhea (CIA) associated with docetaxel-based regimens reported by previous studies are discordant. For navelbine-based chemotherapies, rates of CIA have seldom been reported.</p> <p>Methods</p> <p>Of 170 premenopausal patients recruited between January 2003 and September 2008, 78 were treated with fluorouracil plus epirubicin and cyclophosphamide (FEC), 66 were treated with docetaxel plus epirubicin (TE), and 26 were treated with navelbine plus epirubicin (NE). Patient follow-up was carried up every 3-4 months during the first year, then every 9-12 months during subsequent years.</p> <p>Results</p> <p>In univariate analysis, the rates of CIA were 44.87% for the FEC regimen, 30.30% for the TE regimen and 23.08% for the NE regimen (<it>P </it>= 0.068). Significant differences in the rates of CIA were not found between the FEC and TE treatment groups (<it>P </it>> 0.05), but were found between the FEC and NE treatment groups (<it>P </it>< 0.05). Furthermore, no significant differences were found between the TE and NE regimens (<it>P </it>> 0.05). Tamoxifen use was a significant predictor for CIA (<it>P </it>= 0.001), and age was also a significant predictor (<it>P </it>< 0.001). In multivariate analysis, age (<it>P </it>< 0.001), the type of chemotherapy regimens (<it>P </it>= 0.009) and tamoxifen use (<it>P </it>= 0.003) were all significant predictors.</p> <p>Conclusions</p> <p>Age and administration of tamoxifen were found to be significant predictive factors of CIA, whereas docetaxel and navelbine based regimens were not associated with higher rates of CIA than epirubicin-based regimen.</p

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China

    Get PDF
    Nitrate radical (NO3) and dinitrogen pentoxide (N2O5) play crucial roles in the nocturnal atmosphere. To quantify their impacts, we deployed a thermal-dissociation chemical ionization mass spectrometry (TD-CIMS), to measure their concentration, as well as ClNO2 at a coastal background site in the southern of China during the late autumn of 2012. Moderate levels of NO3, N2O5 and high concentration of ClNO2 were observed during the study period, indicating active NOx-O-3 chemistry in the region. Distinct features of NO3, N2O5 and ClNO2 mixing ratios were observed in different airmasses. Further analysis revealed that the N2O5 heterogeneous reaction was the dominant loss of N2O5 and NO3, which showed higher loss rate compared to that in other coastal sites. Especially, the N2O5 loss rates could reach up to 0.0139 s(-1) when airmasses went across the sea. The fast heterogeneous loss of N2O5 led to rapid NOx loss which could be comparable to the daytime process through NO2 oxidization by OH, and on the other hand, to rapid nitrate aerosol formation. In summary, our results revealed that the N2O5 hydrolysis could play significant roles in regulating the air quality by reducing NOx but forming nitrate aerosols. (C) 2019 Published by Elsevier B.V.Peer reviewe

    The scanning tunneling microscopy and spectroscopy of GaSb1- (x) Bi (x) films of a few-nanometer thickness grown by molecular beam epitaxy

    No full text
    The ultrahigh vacuum scanning tunneling microscope (STM) was used to characterize the GaSb1- (x) Bi (x) films of a few nanometers thickness grown by the molecular beam epitaxy (MBE) on the GaSb buffer layer of 100 nm with the GaSb (100) substrates. The thickness of the GaSb1- (x) Bi (x) layers of the samples are 5 and 10 nm, respectively. For comparison, the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer (ML). The surface of 5 nm GaSb1- (x) Bi (x) film reserves the same terraced morphology as the buffer layer. In contrast, the morphology of the 10 nm GaSb1- (x) Bi (x) film changes to the mound-like island structures with a height of a few MLs. The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film. The statistical analysis with the scanning tunneling spectroscopy (STS) measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb1- (x) Bi (x) layer

    Design and Development of a Novel Glucose Biosensor Based on the Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode

    No full text
    采用交联法制备了羧基二茂铁功能化Fe3O4纳米粒子(FMC-AFNPs)复合材料,并将该复合纳米材料与多壁碳纳米管(MWNTs)、壳聚糖(CS)及葡萄糖氧化酶(GOD)混合修饰于自制的磁性玻碳基底(MGC)表面,制备了GOD/FMC-AFNPs/MWNTs/CS复合膜生物传感器电极. 实验结果表明,FMC-AFNPs复合材料有效地克服了二茂铁在电极表面的泄漏,且FMC-AFNPs/MWNTs/CS复合膜良好的生物兼容性较大地改善了固定化GOD的生物活性. MWNTs具有良好的导电性和大比表面积,在修饰膜内可作为电子传递&ldquo;导线&rdquo;,极大地促进电极的电子传递速率,提高电极的电催化活性和灵敏度. 该电极的葡萄糖检测的线性范围为1.0&times;10-5 ~ 6.0&times;10-3 molL-1,检测限为3.2&times;10-6 mmolL-1(S/N=3),表观米氏常数为5.03&times;10-3 mmolL-1,且有较好的稳定性和重现性.A novel platform for the fabrication of glucose biosensor was successfully constructed by entrapping glucose oxidase (GOD) in a ferrocene monocarboxylic acid-aminated Fe3O4 magnetic nanoparticles conjugate (FMC-AFNPs)/chitosan (CS)/multiwall carbon nanotubes (MWNTs) nanocomposite. The formation of FMC-AFNPs could effectively prevent the leakage of ferrocene and retain its electrochemical activity. This GOD/FMC-AFNPs/CS/MWNTs matrix provided a biocompatible microenvironment for retaining the native activity of the immobilized GOD. Moreover, the presence of MWNTs enhanced the charge-transport properties of the composite and facilitated electron transfer between the GOD and the electrode for the electrocatalysis of glucose. Under the optimal conditions the designed biosensor to glucose exhibited a wide and useful linear range of 1.0&times;10-5 to 6.0&times;10-3 molL-1 with a low detection limit of 3.2&times;10-6 molL-1(S/N=3). The value of was 5.03&times;10-3 molL-1, indicating that the biosensor possesses higher biological affinity to glucose. Furthermore, the biosensor possesses satisfactory stability and good reproducibility.国家863计划资助项目(No. 2012AA022604)、国家自然科学基金(No. 20975021,No. 21275028)、福建省高校产学研科技重点项目(No. 2010Y4003)、福建省自然科学基金资助项目(No. 2010J06011)和福建医科大学博士启动基金(No. 2011BS005)资助作者联系地址:1. 福建医科大学药学院药物分析系,福建 福州 350004;2. 南昌大学高等研究院,江西 南昌 330031Author's Address: 1. Department of Pharmaceutical Analysis of the Fujian Medical University,Fuzhou 350004,China;2. Institute for Advanced Study of Nanchang University,Nanchang 330031,China通讯作者E-mail:[email protected]; [email protected]
    corecore