85 research outputs found

    The prevalence of hyperuricemia in China: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of hyperuricemia varied in different populations and it appeared to be increasing in the past decades. Recent studies suggest that hyperuricemia is an independent risk factor for cardiovascular disease. However, there has not yet been a systematic analysis of the prevalence of hyperuricemia in China.</p> <p>Methods</p> <p>Epidemiological investigations on hyperuricemia in China published in journals were identified manually and on-line by using CBMDISC, Chongqing VIP database and CNKI database. Those Reported in English journals were identified using MEDLINE database. Selected studies had to describe an original study defined by strict screening and diagnostic criteria. The fixed effects model or random effects model was employed according to statistical test for homogeneity.</p> <p>Results</p> <p>Fifty-nine studies were selected, the statistical information of which was collected for systematic analysis. The results showed that the pooled prevalence of hyperuricemia in male was 21.6% (95%CI: 18.9%-24.6%), but it was only 8.6% (95%CI: 8.2%-10.2%) in female. It was found that thirty years was the risk point age in male and it was fifty years in female.</p> <p>Conclusions</p> <p>The prevalence of hyperuricemia is different as the period of age and it increases after 30 years in male and 50 in female. Interventions are necessary to change the risk factors before the key age which is 30 years in male and 50 in female.</p

    The Genetics and Genomics of Virus Resistance in Maize

    Get PDF
    Viruses cause significant diseases on maize worldwide. Intensive agronomic practices, changes in vector distribution, and the introduction of vectors and viruses into new areas can result in emerging disease problems. Because deployment of resistant hybrids and cultivars is considered to be both economically viable and environmentally sustainable, genes and quantitative trait loci for most economically important virus diseases have been identified. Examination of multiple studies indicates the importance of regions of maize chromosomes 2, 3, 6, and 10 in virus resistance. An understanding of the molecular basis of virus resistance in maize is beginning to emerge, and two genes conferring resistance to sugarcane mosaic virus, Scmv1 and Scmv2, have been cloned and characterized. Recent studies provide hints of other pathways and genes critical to virus resistance in maize, but further work is required to determine the roles of these in virus susceptibility and resistance. This research will be facilitated by rapidly advancing technologies for functional analysis of genes in maize

    An enigma in the genetic responses of plants to salt stresses

    Get PDF
    Soil salinity is one of the main factors restricting crop production throughout the world. Various salt tolerance traits and the genes controlling these traits are responsible for coping with salinity stress in plants. These coping mechanisms include osmotic tolerance, ion exclusion, and tissue tolerance. Plants exposed to salinity stress sense the stress conditions, convey specific stimuli signals, and initiate responses against stress through the activation of tolerance mechanisms that include multiple genes and pathways. Advances in our understanding of the genetic responses of plants to salinity and their connections with yield improvement are essential for attaining sustainable agriculture. Although a wide range of studies have been conducted that demonstrate genetic variations in response to salinity stress, numerous questions need to be answered to fully understand plant tolerance to salt stress. This chapter provides an overview of previous studies on the genetic control of salinity stress in plants, including signaling, tolerance mechanisms, and the genes, pathways, and epigenetic regulators necessary for plant salinity tolerance

    Vitamin D and its role in psoriasis: An overview of the dermatologist and nutritionist

    Get PDF

    Toward Understanding Molecular Mechanisms of Abiotic Stress Responses in Rice

    Full text link
    corecore