27 research outputs found

    Background determination for the LUX-ZEPLIN dark matter experiment

    Get PDF
    The LUX-ZEPLIN experiment recently reported limits on WIMP-nucleus interactions from its initial science run, down to 9.2×10-48 cm2 for the spin-independent interaction of a 36 GeV/c2 WIMP at 90% confidence level. In this paper, we present a comprehensive analysis of the backgrounds important for this result and for other upcoming physics analyses, including neutrinoless double-beta decay searches and effective field theory interpretations of LUX-ZEPLIN data. We confirm that the in-situ determinations of bulk and fixed radioactive backgrounds are consistent with expectations from the ex-situ assays. The observed background rate after WIMP search criteria were applied was (6.3±0.5)×10-5 events/keVee/kg/day in the low-energy region, approximately 60 times lower than the equivalent rate reported by the LUX experiment

    Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM

    Full text link
    We analyse the direct detection of neutralino dark matter in the framework of the Next-to-Minimal Supersymmetric Standard Model. After performing a detailed analysis of the parameter space, taking into account all the available constraints from LEPII, we compute the neutralino-nucleon cross section, and compare the results with the sensitivity of detectors. We find that sizable values for the detection cross section, within the reach of dark matter detectors, are attainable in this framework. For example, neutralino-proton cross sections compatible with the sensitivity of present experiments can be obtained due to the exchange of very light Higgses with m_{h_1^0}\lsim 70 GeV. Such Higgses have a significant singlet composition, thus escaping detection and being in agreement with accelerator data. The lightest neutralino in these cases exhibits a large singlino-Higgsino composition, and a mass in the range 50\lsim m_{\tilde\chi_1^0}\lsim 100 GeV.Comment: Final version to appear in JHEP. References added. LaTeX, 53 pages, 23 figure

    PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs

    Full text link
    Models of dark matter with ~ GeV scale force mediators provide attractive explanations of many high energy anomalies, including PAMELA, ATIC, and the WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that are automatically present in such theories, these models naturally explain the DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and exciting dark matter (XDM) scenarios, respectively. Interestingly, with only weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited states with delta < 2 m_e is longer than the age of the universe. The fractional relic abundance of these excited states depends on the temperature of kinetic decoupling, but can be appreciable. There could easily be other mechanisms for rapid decay, but the consequences of such long-lived states are intriguing. We find that CDMS constrains the fractional relic population of ~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2. Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can push this limit significantly lower. We also consider the possibility that the DAMA excitation occurs from a metastable state into the XDM state, which decays via e+e- emission, which allows lighter states to explain the INTEGRAL signal due to the small kinetic energies required. Such models yield dramatic signals from down-scattering, with spectra peaking at high energies, sometimes as high as ~1 MeV, well outside the usual search windows. Such signals would be visible at future Ar and Si experiments, and may be visible at Ge and Xe experiments. We also consider other XDM models involving ~ 500 keV metastable states, and find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure

    Direct detection of neutralino dark matter in supergravity

    Full text link
    The direct detection of neutralino dark matter is analysed in general supergravity scenarios, where non-universal soft scalar and gaugino masses can be present. In particular, the theoretical predictions for the neutralino-nucleon cross section are studied and compared with the sensitivity of dark matter detectors. We take into account the most recent astrophysical and experimental constraints on the parameter space, including the current limit on B(Bs-> mu+ mu-). The latter puts severe limitations on the dark matter scattering cross section, ruling out most of the regions that would be within the reach of present experiments. We show how this constraint can be softened with the help of appropriate choices of non-universal parameters which increase the Higgsino composition of the lightest neutralino and minimise the chargino contribution to the b->s transition.Comment: 27 pages, 22 figure

    Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM

    Full text link
    We study the implications for electroweak baryogenesis (EWB) within the minimal supersymmetric Standard Model (MSSM) of present and future searches for the permanent electric dipole moment (EDM) of the electron, for neutralino dark matter, and for supersymmetric particles at high energy colliders. We show that there exist regions of the MSSM parameter space that are consistent with both present two-loop EDM limits and the relic density and that allow for successful EWB through resonant chargino and neutralino processes at the electroweak phase transition. We also show that under certain conditions the lightest neutralino may be simultaneously responsible for both the baryon asymmetry and relic density. We give present constraints on chargino/neutralino-induced EWB implied by the flux of energetic neutrinos from the Sun, the prospective constraints from future neutrino telescopes and ton-sized direct detection experiments, and the possible signatures at the Large Hadron Collider and International Linear Collider.Comment: 32 pages, 10 figures; version to appear on JHE

    Model Independent Approach to Focus Point Supersymmetry: from Dark Matter to Collider Searches

    Get PDF
    The focus point region of supersymmetric models is compelling in that it simultaneously features low fine-tuning, provides a decoupling solution to the SUSY flavor and CP problems, suppresses proton decay rates and can accommodate the WMAP measured cold dark matter (DM) relic density through a mixed bino-higgsino dark matter particle. We present the focus point region in terms of a weak scale parameterization, which allows for a relatively model independent compilation of phenomenological constraints and prospects. We present direct and indirect neutralino dark matter detection rates for two different halo density profiles, and show that prospects for direct DM detection and indirect detection via neutrino telescopes such as IceCube and anti-deuteron searches by GAPS are especially promising. We also present LHC reach prospects via gluino and squark cascade decay searches, and also via clean trilepton signatures arising from chargino-neutralino production. Both methods provide a reach out to m_{\tg}\sim 1.7 TeV. At a TeV-scale linear e^+e^- collider (LC), the maximal reach is attained in the \tz_1\tz_2 or \tz_1\tz_3 channels. In the DM allowed region of parameter space, a \sqrt{s}=0.5 TeV LC has a reach which is comparable to that of the LHC. However, the reach of a 1 TeV LC extends out to m_{\tg}\sim 3.5 TeV.Comment: 34 pages plus 36 eps figure

    Mixed Higgsino Dark Matter from a Large SU(2) Gaugino Mass

    Full text link
    We observe that in SUSY models with non-universal GUT scale gaugino mass parameters, raising the GUT scale SU(2) gaugino mass |M_2| from its unified value results in a smaller value of -m_{H_u}^2 at the weak scale. By the electroweak symmetry breaking conditions, this implies a reduced value of \mu^2 {\it vis \`a vis} models with gaugino mass unification. The lightest neutralino can then be mixed Higgsino dark matter with a relic density in agreement with the measured abundance of cold dark matter (DM). We explore the phenomenology of this high |M_2| DM model. The spectrum is characterized by a very large wino mass and a concomitantly large splitting between left- and right- sfermion masses. In addition, the lighter chargino and three light neutralinos are relatively light with substantial higgsino components. The higgsino content of the LSP implies large rates for direct detection of neutralino dark matter, and enhanced rates for its indirect detection relative to mSUGRA. We find that experiments at the LHC should be able to discover SUSY over the portion of parameter space where m_{\tg} \alt 2350-2750 ~GeV, depending on the squark mass, while a 1 TeV electron-positron collider has a reach comparable to that of the LHC. The dilepton mass spectrum in multi-jet + \ell^+\ell^- + \eslt events at the LHC will likely show more than one mass edge, while its shape should provide indirect evidence for the large higgsino content of the decaying neutralinos.Comment: 36 pages with 26 eps figure

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches

    Get PDF
    In gravity-mediated SUSY breaking models with non-universal gaugino masses, lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and gluino masses. Lower third generation squark masses, in turn, diminish the effect of a large top quark Yukawa coupling in the running of the higgs mass parameter m_{H_u}^2, leading to a reduction in the magnitude of the superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter gives rise to mixed higgsino dark matter (MHDM), which can efficiently annihilate in the early universe to give a dark matter relic density in accord with WMAP measurements. We explore the phenomenology of the low |M_3| scenario, and find for the case of MHDM increased rates for direct and indirect detection of neutralino dark matter relative to the mSUGRA model. The sparticle mass spectrum is characterized by relatively light gluinos, frequently with m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can be much lighter than sbottom and first/second generation squarks. The presence of low mass higgsino-like charginos and neutralinos is expected at the CERN LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^- collider, the region of MHDM will mean that the entire spectrum of charginos and neutralinos are amongst the lightest sparticles, and are most likely to be produced at observable rates, allowing for a complete reconstruction of the gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure
    corecore