1,372 research outputs found

    A short note on the nested-sweep polarized traces method for the 2D Helmholtz equation

    Full text link
    We present a variant of the solver in Zepeda-N\'u\~nez and Demanet (2014), for the 2D high-frequency Helmholtz equation in heterogeneous acoustic media. By changing the domain decomposition from a layered to a grid-like partition, this variant yields improved asymptotic online and offline runtimes and a lower memory footprint. The solver has online parallel complexity that scales \emph{sub linearly} as O(NP)\mathcal{O} \left( \frac{N}{P} \right), where NN is the number of volume unknowns, and PP is the number of processors, provided that P=O(N1/5)P = \mathcal{O}(N^{1/5}). The variant in Zepeda-N\'u\~nez and Demanet (2014) only afforded P=O(N1/8)P = \mathcal{O}(N^{1/8}). Algorithmic scalability is a prime requirement for wave simulation in regimes of interest for geophysical imaging.Comment: 5 pages, 5 figure

    A short note on a fast and high-order hybridizable discontinuous Galerkin solver for the 2D high-frequency Helmholtz equation

    Get PDF
    The method of polarized traces provides the first documented algorithm with truly scalable complexity for the highfrequency Helmholtz equation, i.e., with a runtime sublinear in the number of volume unknowns in a parallel environment. However, previous versions of this method were either restricted to a low order of accuracy, or suffered from computationally unfavorable boundary reduction to ρ(p) interfaces in the p-th order case. In this note we rectify this issue by proposing a high-order method of polarized traces with compact reduction to two, rather than ρ(p), interfaces. This method is based on a primal Hybridizable Discontinuous Galerkin (HDG) discretization in a domain decomposition setting. In addition, HDG is a welcome upgrade for the method of polarized traces, since it can be made to work with flexible meshes that align with discontinuous coefficients, and it allows for adaptive refinement in h and p. High order of accuracy is very important for attenuation of the pollution error, even in settings when the medium is not smooth. We provide some examples to corroborate the convergence and complexity claims. Keywords: finite element; frequency-domain; numerical; acoustic; wave equatio

    Assembly of Pt nanoparticles on graphitized carbon nanofibers as hierarchically structured electrodes

    Get PDF
    Carbon-based nanofibers decorated with metallic nanoparticles (NPs) as hierarchically structured electrodes offer significant opportunities for use in low-temperature fuel cells, electrolyzers, flow and air batteries, and electrochemical sensors. We present a facile and scalable method for preparing nanostructured electrodes composed of Pt NPs on graphitized carbon nanofibers. Electrospinning directly addresses the issues related to large-scale production of Pt-based fuel cell electrocatalysts. Through precursors containing polyacrylonitrile and Pt salt electrospinning along with an annealing protocol, we obtain approximately 180 nm thick graphitized nanofibers decorated with approximately 5 nm Pt NPs. By in situ annealing scanning transmission electron microscopy, we qualitatively resolve and quantitatively analyze the unique dynamics of Pt NP formation and movement. Interestingly, by very efficient thermal-induced segregation of all Pt from the inside to the surface of the nanofibers, we increase overall Pt utilization as electrocatalysis is a surface phenomenon. The obtained nanomaterials are also investigated by spatially resolved Raman spectroscopy, highlighting the higher structural order in nanofibers upon doping with Pt precursors. The rationalization of the observed phenomena of segregation and ordering mechanisms in complex carbon-based nanostructured systems is critically important for the effective utilization of all metal-containing catalysts, such as electrochemical oxygen reduction reactions, among many other applications

    Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator

    Full text link
    We introduce an efficient method for computing the Stekloff eigenvalues associated with the Helmholtz equation. In general, this eigenvalue problem requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary condition repeatedly. We propose solving the related constant coefficient Helmholtz equation with Fast Fourier Transform (FFT) based on carefully designed extensions and restrictions of the equation. The proposed Fourier method, combined with proper eigensolver, results in an efficient and clear approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure

    One Step Non SUSY Unification

    Get PDF
    We show that it is possible to achieve one step gauge coupling unification in a general class of non supersymmetric models which at low energies have only the standard particle content and extra Higgs fields doublets. The constraints are the experimental values of αem\alpha_{em}, αs\alpha_s and sin⁥2ΞW\sin^2\theta_W at 102GeVs10^2 GeVs, and the lower bounds for FCNC and proton decay rates. Specific example are pointed out.Comment: 10 pages, Latex file,, uses epsf style, Two Postscript figures included. To appear in Europhysics Letter

    Reduced Responsiveness to Volatile Signals Creates a Modular Reward Provisioning in an Obligate Food-for-Protection Mutualism

    Get PDF
    Plants in more than 100 families secrete extrafloral nectar (EFN) to establish food-for-protection mutualisms with ants. Facultative ant-plants secrete EFN as a jasmonic acid (JA)-dependent response to attract generalist ants. In contrast, obligate ant-plants like the Central American “Swollen-Thorn Acacias” are colonized by specialized ants, although an individual host can carry ant colonies from different species that differ in the degree of protection they provide. We hypothesized that hosts that associate simultaneously with various partners should produce rewards in a modular manner to preferentially reward high quality partners. To test this hypothesis, we applied JA to distinct leaves and quantified cell wall invertase activity (CWIN; a regulator of nectar secretion) and EFN secretion by these “local” (i.e., treated) and the “systemic” (i.e., non-treated) leaves of the same branch. Both CWIN activity and EFN secretion increased in local and systemic leaves of the facultative ant-plant Acacia cochliacantha, but only in the local leaves of the obligate ant-plant, A. cornigera. The systemic EFN secretion in A. cochliacantha was associated with an enhanced emission of volatile organic compounds (VOCs). Such VOCs function as “external signals” that control systemic defense responses in diverse plant species. Indeed, the headspace of JA-treated branches of A. cochliacantha induced EFN secretion in both plant species, whereas the headspace of A. cornigera caused no detectable induction effect. Analyses of the headspace using GC-MS identified six VOCs in the headspace of A. cochliacantha that were not emitted by A. cornigera. Among these VOCs, ÎČ-caryophyllene and (cis)-hexenyl isovalerate have already been reported in other plant species to induce defense traits, including EFN secretion. Our observations underline the importance of VOCs as systemic within-plant signals and show that the modular rewarding in A. cornigera is likely to result from a reduced emission of the systemic signal, rather than from a reduced responsiveness to the signal. We suggest that modular rewarding allows hosts to restrict the metabolic investment to specific partners and to efficiently sanction potential exploiters

    Adenovirus-Mediated Transfer of the CFTR Gene to Lung of Nonhuman Primates: Biological Efficacy Study

    Full text link
    Overview summary Recombinant adenoviruses hold tremendous promise for gene therapies of lung disease in cystic fibrosis (CF). An evaluation of the feasibility and safety of this technology in nonhuman primates is critical in the design of clinical protocols. In a series of two papers, Wilson and colleagues describe an extensive study in baboons designed to evaluate the feasibility and safety of direct instillation of CF transmembrane conductance regulator (CFTR)-expressing adenoviruses into the airway. This paper by Engelhardt et al., addresses the biological efficacy of E1-deleted adenoviruses for gene therapy of CF lung disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63146/1/hum.1993.4.6-759.pd

    Effects of natural extracts in the treatment of oral ulcers : a systematic review of evidence from experimental studies in animals

    Get PDF
    To evaluate the clinical and histopathological effects of natural extracts in the treatment of oral ulcers induced in animal experimental models. Material and Methods: We carried out a search in the Medline, Scopus, WoS and Embase database
    • 

    corecore