814 research outputs found
Pistil transcriptome analysis to disclose genes and gene products related to aposporous apomixis in Hypericum perforatum L.
Unlike sexual reproduction, apomixis encompasses a number of reproductive strategies,which permit maternal genome inheritance without genetic recombination and syngamy. The key biological features of apomixis are the circumvention of meiosis (i.e., apomeiosis),the differentiation of unreduced embryo sacs and egg cells, and their autonomous development in functional embryos through parthenogenesis, and the formation of viable endosperm either via fertilization-independent means or following fertilization with a sperm cell. Despite the importance of apomixis for breeding of crop plants and although much research has been conducted to study this process, the genetic control of apomixis is still not well understood. Hypericum perforatum is becoming an attractive model system for the study of aposporous apomixis. Here we report results from a global gene expression analysis of H. perforatum pistils collected from sexual and aposporous plant accessions for the purpose of identifying genes, biological processes and molecular functions associated with the aposporous apomixis pathway. Across two developmental stages corresponding to the expression of aposporous apomeiosis and parthenogenesis in ovules, a total of 224 and 973 unigenes were found to be significantly up- and down-regulated with a fold change >= 2 in at least one comparison, respectively.Differentially expressed genes were enriched for multiple gene ontology (GO) terms,including cell cycle, DNA metabolic process, and single-organism cellular process. For molecular functions, the highest scores were recorded for GO terms associated withDNA binding, DNA (cytosine-5-)-methyltransferase activity and heterocyclic compound binding. As deregulation of single components of the sexual developmental pathway is believed to be a trigger of the apomictic reproductive program, all genes involved in sporogenesis, gametogenesis and response to hormonal stimuli were analyzed in great detail. Overall, our data suggest that phenotypic expression of apospory is concomitant with the modulation of key genes involved in the sexual reproductive pathway. Furthermore, based on gene annotation and co-expression, we underline a putative role of hormones and key actors playing in the RNA-directed DNA methylation pathway in regulating the developmental changes occurring during aposporous apomixis in H. perforatum
DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration
CRISPR/Cas9 genome editing technology can overcome many limitations of traditional breeding, offering enormous potential for crop improvement and food production. Although the direct delivery of Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes to grapevine (Vitis vinifera) protoplasts has been shown before, the regeneration of edited protoplasts into whole plants has not been reported. Here, we describe an efficient approach to obtain transgene-free edited grapevine plants by the transfection and subsequent regeneration of protoplasts isolated from embryogenic callus. As proof of concept, a single-copy green fluorescent protein reporter gene (GFP) in the grapevine cultivar Thompson Seedless was targeted and knocked out by the direct delivery of RNPs to protoplasts. CRISPR/Cas9 activity, guided by two independent sgRNAs, was confirmed by the loss of GFP fluorescence. The regeneration of GFPâ protoplasts into whole plants was monitored throughout development, confirming that the edited grapevine plants were comparable in morphology and growth habit to wild-type controls. We report the first highly efficient protocol for DNA-free genome editing in grapevine by the direct delivery of preassembled Cas9-sgRNA RNP complexes into protoplasts, helping to address the regulatory concerns related to genetically modified plants. This technology could encourage the application of genome editing for the genetic improvement of grapevine and other woody crop plants
Molecular regulation of apple and grape ripening: exploring common and distinct transcriptional aspects of representative climacteric and non-climacteric fruits
Fleshy fruits of angiosperms are organs specialized for promoting seed dispersal by attracting herbivores and enticing them to consume the organ and the seeds it contains. Ripening can be broadly defined as the processes serving as a plant strategy to make the fleshy fruit appealing to animals, consisting of a coordinated series of changes in color, texture, aroma, and flavor that result from an intricate interplay of genetically and epigenetically programmed events. The ripening of fruits can be categorized into two types: climacteric, which is characterized by a rapid increase in respiration rate typically accompanied by a burst of ethylene production, and non-climacteric, in which this pronounced peak in respiration is absent. Here we review current knowledge of transcriptomic changes taking place in apple (Malus x domestica, climacteric) and grapevine (Vitis vinifera, non-climacteric) fruit during ripening, with the aim of highlighting specific and common hormonal and molecular events governing the process in the two species. With this perspective, we found that specific NAC transcription factor members participate in ripening initiation in grape and are involved in restoring normal physiological ripening progression in impaired fruit ripening in apple. These elements suggest the existence of a common regulatory mechanism operated by NAC transcription factors and auxin in the two species.This review summarizes the main transcriptional events coordinating the ripening processes in both climacteric (apple) and non-climacteric (grape) models, focusing on transcription factors and hormonal regulation
Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data
Background High temperature during grape berry ripening impairs the quality of fruits and wines. Veraison time, which marks ripening onset, is a key factor for determining climatic conditions during berry ripening. Understanding its genetic control is crucial to successfully breed varieties more adapted to a changing climate. Quantitative trait loci (QTL) studies attempting to elucidate the genetic determinism of developmental stages in grapevine have identified wide genomic regions. Broad scale transcriptomic studies, by identifying sets of genes modulated during berry development and ripening, also highlighted a huge number of putative candidates. Results With the final aim of providing an overview about available information on the genetic control of grapevine veraison time, and prioritizing candidates, we applied a meta-QTL analysis for grapevine phenology-related traits and checked for co-localization of transcriptomic candidates. A consensus genetic map including 3130 markers anchored to the grapevine genome assembly was compiled starting from 39 genetic maps. Two thousand ninety-three QTLs from 47 QTL studies were projected onto the consensus map, providing a comprehensive overview about distribution of available QTLs and revealing extensive co-localization especially across phenology related traits. From 141 phenology related QTLs we generated 4 veraison meta-QTLs located on linkage group (LG) 1 and 2, and 13 additional meta-QTLs connected to the veraison time genetic control, among which the most relevant were located on LG 14, 16 and 18. Functional candidates in these intervals were inspected. Lastly, taking advantage of available transcriptomic datasets, expression data along berry development were integrated, in order to pinpoint among positional candidates, those differentially expressed across the veraison transition. Conclusion Integration of meta-QTLs analysis on available phenology related QTLs and data from transcriptomic dataset allowed to strongly reduce the number of candidate genes for the genetic control of the veraison transition, prioritizing a list of 272 genes, among which 78 involved in regulation of gene expression, signal transduction or development
Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea
Noble rot is a latent infection of grape berries caused by the necrotrophic fungus Botrytis cinerea, which develops under specific climatic conditions. The infected berries undergo biochemical and metabolic changes, associated with a rapid withering, which altogether offer interesting organoleptic features to sweet white wines. In this paper, we provide RNAseq datasets (raw and normalized counts as well as differentially expressed genes lists) of the transcriptome profiles of both grapevine berries (Vitis vinifera cv. Garganega) and B. cinerea during the establishment of noble rot, artificially induced in controlled conditions. The sequencing data are available in the NCBI GEO database under accession number GSE116741. These data were exploited in a comprehensive meta-analysis of gene expression during noble rot infection, gray mold and post-harvest withering. This highlighted an important common transcriptional reprogramming in different botrytized grape berry varieties and led to the identification of key genes specifically modulated during noble rot infection, which are described in the article entitled \u201cSpecific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries\u201
A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis
open7noA small set of TTG2-like homolog proteins from different species belonging to the WRKY family of transcription factors were shown to share a similar mechanism of action and to control partially conserved biochemical/developmental processes in their native species. In particular, by activating P-ATPases residing on the tonoplast, PH3 from Petunia hybrida promotes vacuolar acidification in petal epidermal cells whereas TTG2 from Arabidopsis thaliana enables the accumulation of proanthocyanidins in the seed coat. In this work we functionally characterized VvWRKY26 identified as the closest grapevine homolog of PhPH3 and AtTTG2. When constitutively expressed in petunia ph3 mutant, VvWRKY26 can fulfill the PH3 function in the regulation of vacuolar pH and restores the wild type pigmentation phenotype. By a global correlation analysis of gene expression and by transient over-expression in Vitis vinifera, we showed transcriptomic relationships of VvWRKY26 with many genes related to vacuolar acidification and transport in grapevine. Moreover, our results indicate an involvement in flavonoid pathway possibly restricted to the control of proanthocyanidin biosynthesis that is consistent with its expression pattern in grape berry tissues. Overall, the results show that, in addition to regulative mechanisms and biological roles shared with TTG2-like orthologs, VvWRKY26 can play roles in fleshy fruit development that have not been previously reported in studies from dry fruit species. This study paves the way toward the comprehension of the regulatory network controlling vacuolar acidification and flavonoid accumulation mechanisms that contribute to the final berry quality traits in grapevine.openAmato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni BattistaAmato, Alessandra; Cavallini, Erika; Zenoni, Sara; Finezzo, Laura; Begheldo, Maura; Ruperti, Benedetto; Tornielli, Giovanni Battist
Temperature affects organic acid, terpene and stilbene metabolisms in wine grapes during postharvest dehydration
The partial dehydration of grapes after harvest is a traditional practice in several winegrowing regions that leads to the production of high quality wines. Postharvest dehydration (also known as withering) has a significant impact on the overall metabolism and physiology of the berry, yielding a final product that is richer in sugars, solutes, and aroma compounds. These changes are, at least in part, the result of a stress response, which is controlled at transcriptional level, and are highly dependent on the grape water loss kinetics and the environmental parameters of the facility where grapes are stored to wither. However, it is difficult to separate the effects driven by each single environmental factor from those of the dehydration rate, especially discerning the effect of temperature that greatly affects the water loss kinetics. To define the temperature influence on grape physiology and composition during postharvest dehydration, the withering of the red-skin grape cultivar Corvina (Vitis vinifera) was studied in two conditioned rooms set at distinct temperatures and at varying relative humidity to maintain an equal grape water loss rate. The effect of temperature was also studied by withering the grapes in two unconditioned facilities located in geographic areas with divergent climates. Technological, LC-MS and GC-MS analyses revealed higher levels of organic acids, flavonols, terpenes and cis- and trans-resveratrol in the grapes withered at lower temperature conditions, whereas higher concentrations of oligomeric stilbenes were found in the grapes stored at higher temperatures. Lower expression of the malate dehydrogenase and laccase, while higher expression of the phenylalanine ammonia-lyase, stilbene synthase and terpene synthase genes were detected in the grapes withered at lower temperatures. Our findings provide insights into the importance of the temperature in postharvest withering and its effect on the metabolism of the grapes and on the quality of the derived wines
A major QTL is associated with berry grape texture characteristics
9restrictedInternationalItalian coauthor/editorBerry texture and berry skin mechanical properties are traits with high agronomic relevance because they are related to quality parameters and marketing requirements of wine, table, and raisin grapes. Searching for QTLs linked to berry texture, an F1 population of 152 individuals and their parents were used in this study. These F1 plants were obtained crossing Raboso Veronese, a seeded black wine grape cultivar, and Sultanina, a seedless white grape variety, especially used for raisins. Density flotation was applied for berry sorting improving the management of many and highly variable genotypes, irrespective of the quantification of specific molecule classes. Berries were evaluated for technological ripeness parameters and mechanical properties. Texture parameters were taken as raw data and as data normalised on berry dimensions, i.e., berry diameter or surface or volume. SSR molecular markers were used to produce a genetic map and a major QTL for berry texture was found on chromosome 18 with traits related to berry firmness showing a phenotypical explained variance higher than 60 %, and traits related to berry resilience, springiness and cohesiveness showing a variance higher than 50 %. Surprisingly, this QTL showed to be associated with SSR markers linked to VviAGL11, the main gene linked to seedlessness. VviAGL11 expression and co-expression profiling during grape ripening was evaluated using available information; this data suggested a role for this gene on the texture of a ripe berry.restrictedCrespan, Manna; Migliaro, Daniele; Vezzulli, Silvia; Zenoni, Sara; Tornielli, Giovanni Battista; Giacosa, Simone; Paissoni, Maria Alessandra; RĂo Segade, Susana; Rolle, LucaCrespan, M.; Migliaro, D.; Vezzulli, S.; Zenoni, S.; Tornielli, G.B.; Giacosa, S.; Paissoni, M.A.; RĂo Segade, S.; Rolle, L
NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.NAC61 regulates stilbene biosynthesis and abiotic/biotic stress responses that hallmark late- and post-ripening developmental stages in grapes. NAC61 self-activates and synergistically interacts with the master ripening regulator NAC60
VviAGL11 self-regulates and targets hormone- and secondary metabolism-related genes during seed development
: VviAGL11, the Arabidopsis SEEDSTICK homolog, has been proposed to have a causative role in grapevine stenospermocarpy. An association between a mutation in the coding sequence (CDS) and the seedless phenotype was reported, however, no working mechanisms have been demonstrated yet. We performed a deep investigation of the full VviAGL11 gene sequence in a collection of grapevine varieties belonging to several seedlessness classes that revealed three different promoter-CDS combinations. By investigating the expression of the three VviAGL11 alleles, and by evaluating their ability to activate the promoter region, we observed that VviAGL11 self-activates in a specific promoter-CDS combination manner. Furthermore, by transcriptomic analyses on ovule and developing seeds in seeded and seedless varieties and co-expression approaches, candidate VviAGL11 targets were identified and further validated through luciferase assay and in situ hybridization. We demonstrated that VviAGL11 Wild Type CDS activates Methyl jasmonate esterase and Indole-3-acetate beta-glucosyltransferase, both involved in hormone signaling and Isoflavone reductase, involved in secondary metabolism. The dominant-negative effect of the mutated CDS was also functionally ectopically validated in target induction. VviAGL11 was shown to co-localize with its targets in the outer seed coat integument, supporting its direct involvement in seed development, possibly by orchestrating the crosstalk among MeJA, auxin, and isoflavonoids synthesis. In conclusion, the VviAGL11 expression level depends on the promoter-CDS allelic combination, and this will likely affect its ability to activate important triggers of the seed coat development. The dominant-negative effect of the mutated VviAGL11 CDS on the target genes activation was molecularly validated. A new regulatory mechanism correlating VviAGL11 haplotype assortment and seedlessness class in grapevine is proposed
- âŠ