422 research outputs found

    p-wave phase shift and scattering length of 6^6Li

    Full text link
    We have calculated the p-wave phase shifts and scattering length of 6^6Li. For this we solve the pp partial wave Schr\"odinger equation and analyze the validity of adopting the semiclassical solution to evaluate the constant factors in the solution. Unlike in the ss wave case, the semiclassical solution does not provide unique value of the constants. We suggest an approximate analytic solution, which provides reliable results in special cases. Further more, we also use the variable phase method to evaluate the phase shifts. The p-wave scattering lengths of 132^{132}Cs and 134^{134}Cs are calculated to validate the schemes followed. Based on our calculations, the value of the pp wave scattering length of 6^6Li is −45ao-45a_o.Comment: 10 figure

    Resonant Coupling in the Heteronuclear Alkali Dimers for Direct Photoassociative Formation of X(0,0) Ultracold Molecules

    Full text link
    Promising pathways for photoassociative formation of ultracold heteronuclear alkali metal dimers in their lowest rovibronic levels (denoted X(0,0)) are examined using high quality ab initio calculations of potential energy curves currently available. A promising pathway for KRb, involving the resonant coupling of the 21Π2 ^1\Pi and 11Π1 ^1\Pi states just below the lowest excited asymptote (K(4s4s)+Rb(5p1/25p_{1/2})), is found to occur also for RbCs and less promisingly for KCs as well. The resonant coupling of the 31Σ+3 ^1 \Sigma ^+ and 11Π1 ^1\Pi states, also just below the lowest excited asymptote, is found to be promising for LiNa, LiK, LiRb, and less promising for LiCs and KCs. Direct photoassociation to the 11Π1 ^1\Pi state near dissociation appears promising in the final dimers, NaK, NaRb, and NaCs, although detuning more than 100 cm−1^{-1} below the lowest excited asymptote may be required.Comment: 20 pages, 12 figures, Submitted to Journal of Physical Chemistry

    Population redistribution in optically trapped polar molecules

    Full text link
    We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab-initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v"=3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.Comment: 6 pages, 5 figures, EPJD Topical issue on Cold Quantum Matter - Achievements and Prospect

    Influence of nearly resonant light on the scattering length in low-temperature atomic gases

    Get PDF
    We develop the idea of manipulating the scattering length aa in low-temperature atomic gases by using nearly resonant light. As found, if the incident light is close to resonance with one of the bound pp levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting atoms to this level can significantly change the value and even reverse the sign of aa. The decay of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our calculations show the feasibility of optical manipulations of trapped Bose condensates through a light-induced change in the mean field interaction between atoms, which is illustrated for 7^7Li.Comment: 12 pages, 1 Postscript figur

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Theoretical study of the absorption spectra of the lithium dimer

    Get PDF
    For the lithium dimer we calculate cross sections for absorption of radiation from the vibrational-rotational levels of the ground X [singlet Sigma g +] electronic state to the vibrational levels and continua of the excited A [singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from photoassociation spectroscopy and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 1000 to 2000 K and are compared with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig

    Useful immunohistochemical indicators in canine mast cell tumours

    Get PDF
    Morphological and immunohistochemical analysis of 45 canine mast cell tumours was performed to determine whether the proteins examined are useful for a more precise description of tumour morphology and a more reliable determination of the prognosis in patients. Tissue sections were stained according to the standard haematoxylin and eosin (HE) technique and with toluidine blue to demonstrate cytoplasmic granules. Immunohistochemical studies were performed, using the cell markers CD117 (c-kit), p16 and von Willebrand factor (FVIII). In CD117 three different staining patterns were observed: (1) membranous reaction, (2) intense staining of cytoplasm, and (3) a diffuse, delicate cytoplasmic reaction. Von Willebrand antibody was evaluated on the basis of the number of blood vessels stained. p16 expression was evaluated by scoring positive nuclear reaction. Positive expression was demonstrated for all examined antigens, but their level of expression differed depending on the grades of tumour malignancy. Statistical analysis of the results documented a pronounced positive correlation between the markers studied and the grade of tumour malignancy (P < 0.001). It was shown that each of the cell markers examined represents a useful prognostic indicator for patients with mast cell tumours. The calculated correlation coefficients demonstrate a strong association between the expressions of CD117, FVIII and p16, and the histological malignancy of a tumour

    Luttinger model approach to interacting one-dimensional fermions in a harmonic trap

    Full text link
    A model of interacting one--dimensional fermions confined to a harmonic trap is proposed. The model is treated analytically to all orders of the coupling constant by a method analogous to that used for the Luttinger model. As a first application, the particle density is evaluated and the behavior of Friedel oscillations under the influence of interactions is studied. It is found that attractive interactions tend to suppress the Friedel oscillations while strong repulsive interactions enhance the Friedel oscillations significantly. The momentum distribution function and the relation of the model interaction to realistic pair interactions are also discussed.Comment: 12 pages latex, 1 eps-figure in 1 tar file, extended Appendix, added and corrected references, new eq. (53), corrected typos, accepted for PR

    Calculation of the interspecies s-wave scattering length in an ultracold Na-Rb vapor

    Get PDF
    We report the calculation of the interspecies scattering length for the sodium-rubidium (Na-Rb) system. We present improved hybrid potentials for the singlet X1ÎŁ+X^1\Sigma^+ and triplet a3ÎŁ+a^3\Sigma^+ ground states of the NaRb molecule, and calculate the singlet and triplet scattering lengths asa_{s} and ata_{t} for the isotopomers 23^{23}Na87^{87}Rb and 23^{23}Na85^{85}Rb. Using these values, we assess the prospects for producing a stable two-species Bose-Einstein condensate in the Na-Rb system.Comment: v2: report correct units in Table captions, fix error in conclusions for 23^{23}Na85^{85}Rb TBEC. Otherwise, more concise presentation, typos fixed. 6 pages, 1 figur
    • 

    corecore