210 research outputs found

    Anatomical liver segmentectomy 2 for combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in segment 2 portal branch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic resection is the only effective treatment for combined hepatocellular carcinoma and cholangiocarcinoma.</p> <p>Case presentation</p> <p>A 52-year-old man was preoperatively diagnosed with hepatocellular carcinoma in segment 2 with tumor thrombus in the segment 2 portal branch. Anatomical liver segmentectomy 2, including separation of the hepatic arteries, portal veins, and bile duct, enabled us to remove the tumor and portal thrombus completely. Modified selective hepatic vascular exclusion, which combines extrahepatic control of the left and middle hepatic veins with occlusion of left hemihepatic inflow, was used to reduce blood loss. A pathological examination revealed combined hepatocellular carcinoma and cholangiocarcinoma with tumor thrombus in the segment 2 portal branch. No postoperative liver failure occurred, and remnant liver function was adequate.</p> <p>Conclusion</p> <p>The separation method of the hepatic arteries, portal veins, and bile duct is safe and feasible for a liver cancer patient with portal vein tumor thrombus. Modified selective hepatic vascular exclusion was useful to control bleeding during liver transection. Anatomical liver segmentectomy 2 using these procedures should be considered for a patient with a liver tumor located at segment 2 arising from a damaged liver.</p

    Evolutionary Reconstructions of the Transferrin Receptor of Caniforms Supports Canine Parvovirus Being a Re-emerged and Not a Novel Pathogen in Dogs

    Get PDF
    Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host

    GLADX: An Automated Approach to Analyze the Lineage-Specific Loss and Pseudogenization of Genes

    Get PDF
    A well-established ancestral gene can usually be found, in one or multiple copies, in different descendant species. Sometimes during the course of evolution, all the representatives of a well-established ancestral gene disappear in specific lineages; such gene losses may occur in the genome by deletion of a DNA fragment or by pseudogenization. The loss of an entire gene family in a given lineage may reflect an important phenomenon, and could be due either to adaptation, or to a relaxation of selection that leads to neutral evolution. Therefore, the lineage-specific gene loss analyses are important to improve the understanding of the evolutionary history of genes and genomes. In order to perform this kind of study from the increasing number of complete genome sequences available, we developed a unique new software module called GLADX in the DAGOBAH framework, based on a comparative genomic approach. The software is able to automatically detect, for all the species of a phylum, the presence/absence of a representative of a well-established ancestral gene, and by systematic steps of re-annotation, confirm losses, detect and analyze pseudogenes and find novel genes. The approach is based on the use of highly reliable gene phylogenies, of protein predictions and on the analysis of genomic mutations. All the evidence associated to evolutionary approach provides accurate information for building an overall view of the evolution of a given gene in a selected phylum. The reliability of GLADX has been successfully tested on a benchmark analysis of 14 reported cases. It is the first tool that is able to fully automatically study the lineage-specific losses and pseudogenizations. GLADX is available at http://ioda.univ-provence.fr/IodaSite/gladx/

    Transplanted Human Amniotic Membrane-Derived Mesenchymal Stem Cells Ameliorate Carbon Tetrachloride-Induced Liver Cirrhosis in Mouse

    Get PDF
    BACKGROUND: Human amniotic membrane-derived mesenchymal stem cells (hAMCs) have the potential to reduce heart and lung fibrosis, but whether could reduce liver fibrosis remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Hepatic cirrhosis model was established by infusion of CClβ‚„ (1 ml/kg body weight twice a week for 8 weeks) in immunocompetent C57Bl/6J mice. hAMCs, isolated from term delivered placenta, were infused into the spleen at 4 weeks after mice were challenged with CClβ‚„. Control mice received only saline infusion. Animals were sacrificed at 4 weeks post-transplantation. Blood analysis was performed to evaluate alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analysis of the livers for fibrosis, hepatic stellate cells activation, hepatocyte apoptosis, proliferation and senescence were performed. The donor cell engraftment was assessed using immunofluorescence and polymerase chain reaction. The areas of hepatic fibrosis were reduced (6.2%Β±2.1 vs. control 9.6%Β±1.7, p<0.05) and liver function parameters (ALT 539.6Β±545.1 U/dl, AST 589.7Β±342.8 U/dl,vs. control ALT 139.1Β±138.3 U/dl, p<0.05 and AST 212.3Β±110.7 U/dl, p<0.01) were markedly ameliorated in the hAMCs group compared to control group. The transplantation of hAMCs into liver-fibrotic mice suppressed activation of hepatic stellate cells, decreased hepatocyte apoptosis and promoted liver regeneration. More interesting, hepatocyte senescence was depressed significantly in hAMCs group compared to control group. Immunofluorescence and polymerase chain reaction revealed that hAMCs engraftment into host livers and expressed the hepatocyte-specific markers, human albumin and Ξ±-fetoproteinran. CONCLUSIONS/SIGNIFICANCE: The transplantation of hAMCs significantly decreased the fibrosis formation and progression of CClβ‚„-induced cirrhosis, providing a new approach for the treatment of fibrotic liver disease

    Testing the Ortholog Conjecture with Comparative Functional Genomic Data from Mammals

    Get PDF
    A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the β€œortholog conjecture”). Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act

    Clinical and molecular characterization of Wilson's disease in China: identification of 14 novel mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wilson's disease (WND) is a rare autosomal recessive disorder. Here we have evaluated 62 WND cases (58 probands) from the Chinese Han population to expand our knowledge of <it>ATP7B </it>mutations and to more completely characterize WND in China.</p> <p>Methods</p> <p>The coding and promoter regions of the <it>ATP7B </it>gene were analyzed by direct sequencing in 62 Chinese patients (58 probands) with WND (male, n = 37; female, n = 25; age range, 2 ~ 61 years old).</p> <p>Results</p> <p>Neurologic manifestations were associated with older age at diagnosis (p < 0.0001) and longer diagnostic delay (p < 0.0001). Age at diagnosis was also correlated with urinary copper concentration (r = 0.58, p < 0.001). Forty different mutations, including 14 novel mutations, were identified in these patients. Common mutations included p.Arg778Leu (31.9%) and p.Pro992Leu (11.2%). Homozygous p.Arg778Leu and nonsense mutation/frameshift mutations were more often associated with primary hepatic manifestations (p = 0.0286 and p = 0.0383, respectively) and higher alanine transaminase levels at diagnosis (p = 0.0361 and p = 0.0047, respectively). Nonsense mutation/frameshift mutations were also associated with lower serum ceruloplasmin (p = 0.0065).</p> <p>Conclusions</p> <p>We identified 14 novel mutations and found that the spectrum of mutations of <it>ATP7B </it>in China is quite distinct from that of Western countries. The mutation type plays a role in predicting clinical manifestations. Genetic testing is a valuable tool to detect WND in young children, especially in patients younger than 8 years old. Four exons (8, 12, 13, and 16) and two mutations (p.Arg778Leu, p.Pro992Leu) should be considered high priority for cost-effective testing in China.</p
    • …
    corecore