1,789 research outputs found

    Translational switching from growth to defense – a common role for TOR in plant and mammalian immunity?

    Get PDF
    Characterization of mRNA populations associatedwith the translational machinery (translatome)is shedding light on the molecular mechanisms ofplant environmental responses. The work presentedby Meteignier et  al. (2017) describes how selectivechanges in translation modulate the transitionfrom growth to defense responses in Arabidopsis,revealing new similarities between plant and animalimmunity.Fil: Zanetti, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    Translational switching from growth to defense - a common role for TOR in plant and mammalian immunity?

    Get PDF
    Characterization of mRNA populations associated with the translational machinery (translatome) is shedding light on the molecular mechanisms of plant environmental responses. The work presented by Meteignier et al. (2017) describes how selective changes in translation modulate the transition from growth to defense responses in Arabidopsis, revealing new similarities between plant and animal immunity.Facultad de Ciencias Exacta

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    How legumes recognize rhizobia

    Get PDF
    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria.Facultad de Ciencias Exacta

    Auxin Response Factor 2 (ARF2), ARF3, and ARF4 Mediate Both Lateral Root and Nitrogen Fixing Nodule Development in Medicago truncatula

    Get PDF
    Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans-acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.Fil: Kirolinko, Cristina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Hobecker, Karen Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Wen, Jiangqi. Noble Research Institute LLC; Estados UnidosFil: Mysore, Kirankumar S.. Noble Research Institute LLC; Estados UnidosFil: Niebel, Andreas. Centre National de la Recherche Scientifique; Francia. Instituto National de Recherches Agronomiques; Francia. Université de Toulouse; FranciaFil: Blanco, Flavio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Zanetti, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress

    Get PDF
    3 pages, 3 figures.-- PMID: 12432039 [PubMed].1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to other ACC oxidase proteins from several plants species. Northern blot analysis revealed that the ST-ACO3 mRNA level increased in potato tubers upon inoculation with F. eumartii, as well as after treatment with salicylic acid and indole-3-acetic acid, suggesting a cross-talk between different signalling pathways involved in the defence response of potato tubers against F. eumartii attack.This work was partially supported by the IFS (Sweden), CONICET, UNMDP, ANPCyT (Grant No. 01-09768), and FundacioÂn Antorchas (Argentina). MEZ and CT were recipients of a fellowship from CONICET and UNMDP, respectively.Peer reviewe

    Effects of two highly monounsaturated oils on lipid composition and enzyme activities in rat jejunum

    Get PDF
    The effects of two monounsaturated fatty acid (MUFA) oils, olive oil (OO)and high-oleic sunflower oil (HOSO), with high content in oleic acid butdiffering in their non-fatty acid fraction, on brush-border membrane(BBM) lipid composition and fluidity and on mucosal enzyme activitiesof rat jejunum were studied. Animals were given semipurified diet withlinoleic acid to prevent essential fatty acid deficiency (control group)or semipurified diet containing 10% of either OO or HOSO for 12weeks. There was a significant decrease in the content of jejunalBBM phospholipids together with an increase in the level of freecholesterol in both oil-fed rats, when compared to controlgroup. Although the increase in the BBM free cholesterol levelwas not statistically significant in HOSO-fed rats, a significantdecrease in the phospholipid/free cholesterol ratio was found inboth OO and HOSO-fed animals compared to control group. Rat jejunalBBM had a high level of free fatty acids which was increased in BBMisolated from OO and HOSO-fed animals. There was no statisticalsignificant difference in the phospholipid distribution between thecontrol and the OO group. However, HOSO-fed animals showed the lowestlevel of phosphatidylethanolamine together with the highestphosphatidylcholine content and the phosphatidylcholine/sphingomyelinratio. The fatty acid pattern of jejunal BBM lipids was modifiedaccording to the major fatty acids in the oils. There was a decreasein both stearic acid (18:0) and linoleic acid (18:2 n-6), togetherwith an increase in oleic acid (18:1 n-9) in jenunal BBM isolatedfrom both oil experimental groups. All these results were accompaniedby a significant increase in the BBM fluidity (as assessed bysteady-state fluorescence polarization of diphenylhexatriene) isolatedfrom oil-fed rat, when compared to control group. OO and HOSO-fedanimals had the lowest activities of sucrase and maltase, whilealkaline phosphatase activity only was decreased in HOSO-fedanimals. The specific activity of maltase was not modified in anyexperimental rats. In summary, both MUFA oils induced similar effectson jejunal BBM lipid composition, fluidity, sucrase, maltase andlactase activities. Furthermore, HOSO intake resulted in a lowestalkaline phosphatase activity which was accompanied by changes inindividual phospholipid composition. All these results suggest thateffects of MUFA oils on jejunal BBM lipid composition and hydrolaseactivities are most likely due to the presence of high content ofoleic acid rather than other components contained in the non-fattyacid of olive oil

    Lipid Composition and Fluidity in the Jejunal Brush-Border Membrane of Spontaneously Hypertensive Rats. Effects on Activities of Membrane- Bound Proteins

    Get PDF
    The lipid compositíon and fluidity of jejunal brush-border membrane vesicles (BBMV) have been studied in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The activities of both Na+-dependent D-glucose cotransport and Na+-H antiport have also been determined. A significan! increase in the level of free cholesterol was observed in jejunal BBMV from SHR compared to WKY rats. Since phospholipid values did not change in either group of animals, a significan! enhancement in the free cholesterol/phospholipid ratio was observed in SHR. A decrease in the levels of phosphatidylethanolamine together with an increase in the values of phos­ phatidylserine was observed in hypertensive rats. Although the content of phosphatidylcholine (PC) and sphingomyelin (SM) was not singificantly altered in SHR, the ratio PC/SM significantly increased in these animals when compared to WKY rats. The majar fatty acids present in bursh-border membranes prepared from SHR and WKY rats were palmitic (16:0), stearic (18:0), oleic (18:1, n-9) and linoleic (18:2, n-6), and the fatty acid composition was not modified by the hypertension. A decreased fluorescence polarization, i.e., increased membrane ftuidity, was observed in SHR, which was not correlated to the increased ratio of cholesterol/phospholipid found in the brush-border membrane isolated from these animals. These structural changes found in SHR were associated to an enhancement in both Na+ -dependent D-glucose transport and Na+-H+ antiport activíty in the jejunal BBMVof SHR

    Insights into post-transcriptional regulation during legume-rhizobia symbiosis

    Get PDF
    During the past ten years, changes in the transcriptome have been assessed at different stages of the legume-rhizobia association by the use of DNA microarrays and, more recently, by RNA sequencing technologies. These studies allowed the identification of hundred or thousand of genes whose steadystate mRNA levels increase or decrease upon bacterial infection or in nodules as compared with uninfected roots.1-7 However, transcriptome based-approaches do not distinguish between mRNAs that are being actively translated, stored as messenger ribonucleoproteins (mRNPs) or targeted for degradation. Despite that the increase in steady-state levels of an mRNA does not necessarily correlate with an increase in abundance or activity of the encoded protein, this information has been commonly used to select genes that are candidates to play a role during nodule organogenesis or bacterial infection. Such criterion does not take into account the post-transcriptional mechanisms that contribute to the regulation of gene expression. One of such mechanisms, which has significant impact on gene expression, is the selective recruitment of mRNAs to the translational machinery. Here, we review the post-transcriptional mechanisms that contribute to the regulation of gene expression in the context of the ecological and agronomical important symbiotic interaction established between roots of legumes and the nitrogen fixing bacteria collectively known as rhizobia.8 In addition, we discuss how the development of new technologies that allow the assessment of these regulatory layers would help to understand the genetic network governing legume rhizobia symbiosis.Instituto de Biotecnologia y Biologia Molecula

    A C subunit of the plant nuclear factor NF-Y required for rhizobial infection and nodule development affects partner selection in the common bean-Rhizobium etli Symbiosis

    Get PDF
    Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes-induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance.Facultad de Ciencias Exacta
    • …
    corecore