30 research outputs found

    dphase_lamepsat: ALADIN-Austria Ensemble system run by ZAMG for the MAP D-PHASE project

    No full text
    Model system ALADIN, 18km horizontal resolution, 37 levels in vertical, LOPEZ microphysics etc. Ensemble system with 16 members. 2 runs per day at 00, 12 UTC, Initial perturbation: Downscaling of ECMWF Singular vector perturbation Lateral boundary perturbation: Coupling with the ECMWF EPS system Domain of products: Latitude: 38.53---54.98, 0.15 deg grid space, 110 grids; Longitude: 2.55---31.8, 0.15 deg. grid space, 196 grids Every 3 hours, from 0 to 48 hours forecast. Grid description: quadratic grid, it is the Lambert Projection DDOM: xfirst: 2.55 yfirst: 42.95 xsize: 105.0 ysize: 49.0 xinc: 0.15 yinc: 0.15 xnpole: 0.0 ynpole: 0.

    dphase_aladat: ALADIN-Austria model forecasts run by ZAMG for the MAP D-PHASE project

    No full text
    Aladin-Austria daily numerical weather forecast. It is a hydrostatical model, where the equations are solved by transformation to the spectral form. For the microphysics a Kessler-Typ scheme is used. Two runs are conducted each day at 00:00, 12:00 (72 hours forecast range). The horizontal resolution amounts to 9.6 km, on 45 pressure levels in the vertical. The domain spans Central Europe. Grid description: quadratic grid, Lambert Projection DDOM: xfirst: 2.53 yfirst: 42.94 xsize: 142.0 ysize: 102.0 xinc: 0.11 yinc: 0.07 xnpole: 0.0 ynpole: 0.

    The SHARE European Earthquake Catalogue (SHEEC) 1000–1899

    Get PDF
    In the frame of the European Commission project “Seismic Hazard Harmonization in Europe” (SHARE), aiming at harmonizing seismic hazard at a European scale, the compilation of a homogeneous, European parametric earthquake catalogue was planned. The goal was to be achieved by considering the most updated historical dataset and assessing homogenous magnitudes, with support from several institutions. This paper describes the SHARE European Earthquake Catalogue (SHEEC), which covers the time window 1000–1899. It strongly relies on the experience of the European Commission project “Network of Research Infrastructures for European Seismology” (NERIES), a module of which was dedicated to create the European “Archive of Historical Earthquake Data” (AHEAD) and to establish methodologies to homogenously derive earthquake parameters from macroseismic data. AHEAD has supplied the final earthquake list, obtained after sorting duplications out and eliminating many fake events; in addition, it supplied the most updated historical dataset. Macroseismic data points (MDPs) provided by AHEAD have been processed with updated, repeatable procedures, regionally calibrated against a set of recent, instrumental earthquakes, to obtain earthquake parameters. From the same data, a set of epicentral intensity-to-magnitude relations has been derived,with the aimof providing another set of homogeneous Mw estimates. Then, a strategy focussed on maximizing the homogeneity of the final epicentral location and Mw, has been adopted. Special care has been devoted also to supply location and Mw uncertainty. The paper focuses on the procedure adopted for the compilation of SHEEC and briefly comments on the achieved results
    corecore