10 research outputs found

    Sugarcane Performance Under Phosphorus Deficiency: Physiological Responses And Genotypic Variation

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Background and aim: Developing genotypes with enhanced performance under phosphorus (P) deficiency can be described as an approach to improving production sustainability. This study investigated the physiological responses of sugarcane varieties to varying P availability and the plant traits contributing to P efficiency (shoot dry matter production under low P availability).Methods: Sugarcane varieties IACSP94-2101, IACSP95-5000, RB86-7515, IAC91-1099, IACSP94-2094 and IAC87-3396 were grown under low (25 mg P kg−1 soil) and high (400 mg P kg−1 soil) P supply, and the leaf gas exchange, photochemical activity, plant growth and P uptake were evaluated.Results: The sugarcane varieties responded distinctly to a low P supply, as indicated by differences in root and shoot growth, leaf area, net CO2 assimilation, photosynthetic P utilization efficiency, leaf P concentration and P uptake. The following ranking was obtained for P efficiency: IACSP94-2094 = IACSP95-5000 > IAC87-3396 = RB86-7515 = IACSP94-2101 = IAC91-1099.Conclusion: Greater leaf area, net CO2 assimilation and P acquisition efficiency were combined in the more P-efficient varieties but not in the less efficient ones. Although it was not possible to separate cause and effect, such finding might be explained by the positive effect of improved leaf P concentration on leaf area and net CO2 assimilation, which in turn contributed to sustaining improved plant performance under a low P supply.38601/02/15273283CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico; #2011/18446-0; FAPESP; Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Assuero, S.G., Mollier, A., Pellerin, S., The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production (2004) Plant Cell Environ, 27, pp. 887-895. , COI: 1:CAS:528:DC%2BD2cXmt1ygtbs%3DBalemi, T., Schenk, M.K., Genotype difference of potato in carbon budgeting as a mechanism of phosphorus utilization efficiency (2009) Plant Soil, 322, pp. 91-99. , COI: 1:CAS:528:DC%2BD1MXhtVWisr3FBataglia, O.C., Furlani, A.M.C., Teixeira, J.P.F., Furlani, P.R., Gallo, J.R., (1983) Método de análise química de plantas, , Instituto Agronômico, Campinas:Besford, R.T., A rapid tissue test for diagnosing phosphorus deficiency in the tomato plant (1980) Ann Bot, 45, pp. 225-227. , COI: 1:CAS:528:DyaL3MXktlKhug%3D%3DCamargo, O.A., Moniz, A.C., Jorge, J.A., Valadares, J.M.A.S., (1986) Métodos de análise química e física de solos, , Instituto Agronômico, Campinas:Elliott, G.C., Läuchli, A., Evaluation of an acid phosphatase assay for detection of phosphorus deficiency in leaves of maize (Zea mays L.) (1986) J Plant Nutr, 9, pp. 1469-1477. , COI: 1:CAS:528:DyaL28Xmt1Gitbk%3DFoyer, C., Spencer, C., The relationship between phosphate status and photosynthesis in leaves. Effects on intracelular orthophosphate distribution, photosynthesis and assimilate partitioning (1986) Planta, 167, pp. 369-375. , COI: 1:STN:280:DC%2BC2c7nt1Oktw%3D%3D, PID: 24240306Fredeen, A.L., Rao, I.M., Terry, N., Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max (1989) Plant Physiol, 89, pp. 225-230. , COI: 1:CAS:528:DyaL1MXhtFelur0%3D, PID: 16666518Fujita, K., Kai, Y., Takayanagi, M., El-Shemy, H., Adu-Gyamfi, J.J., Mohapatra, P.K., Genotypic variability of pigeonpea in distribution of photosynthetic carbon at low phosphorus levels (2004) Plant Sci, 166, pp. 641-649. , COI: 1:CAS:528:DC%2BD2cXhtFWgsb4%3DGahoonia, T.S., Nielsen, N.E., Root traits as tools for creating phosphorus efficient crop varieties (2004) Plant Soil, 260, pp. 47-57Gopalasundaram, P., Bhaskaran, A., Rakkiyappan, P., Integrated nutrient management in sugarcane (2012) Sugar Tech, 14, pp. 3-20. , COI: 1:CAS:528:DC%2BC38Xot1ymtLY%3DHidaka, A., Kitayama, K., Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients (2009) J Ecol, 97, pp. 984-991. , COI: 1:CAS:528:DC%2BD1MXhtFOktL%2FFKavanová, M., Lattanzi, F.A., Grimoldi, A.A., Schnyder, H., Phosphorus deficiency decreases cell division and elongation in grass leaves (2006) Plant Physiol, 141, pp. 766-775. , PID: 16648218Lambers, H., Shane, M.W., Crameri, M.D., Pearse, S.J., Veneklaas, E.J., Root structure and unctioning for efficient acquisition of phosphorus: matching morphological and physiological traits (2006) Ann Bot, 98, pp. 693-713. , PID: 16769731Landell, M.G.A., Bressiani, J.A., Melhoramento genético, caracterização e manejo varietal (2008) Cana-de-açúcar, pp. 101-156. , Dinardo-Miranda LL, Vasconcellos ACM, Landell MGA, (eds), Instituto Agronômico, Campinas:Landell, M.G.A., Prado, H., Vasconcelos, A.C.M., Perecin, D., Rosseto, R., Bidoia, M.A.P., Silva, M.A., Xavier, M.A., Oxisol subsurface chemical attributes related to sugarcane productivity (2003) Sic Agric, 60, pp. 741-745. , COI: 1:CAS:528:DC%2BD3sXpvFChsrs%3DLynch, J.P., Ho, M.D., Rhizoeconomics. Carbon costs of phosphorus acquisition (2005) Plant Soil, 269, pp. 45-56. , COI: 1:CAS:528:DC%2BD2MXks1Oisrw%3DMollier, A., Pellerin, S., Maize root system growth and development as influenced by phosphorus deficiency (1999) J Exp Bot, 50, pp. 487-497. , COI: 1:CAS:528:DyaK1MXit1eqtb4%3DNielsen, K.L., Eshel, A., Lynch, J.P., The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes (2001) J Exp Bot, 52, pp. 329-339. , COI: 1:CAS:528:DC%2BD3MXjtVaju7w%3D, PID: 11283178Pieters, A.J., Paul, M.J., Lawlor, D.W., Low sink demand limits photosynthesis under Pi deficiency (2001) J Exp Bot, 52, pp. 1083-1091. , COI: 1:CAS:528:DC%2BD3MXltVeisrk%3D, PID: 11432924Plénet, D., Mollier, A., Pellerin, S., Growth analysis of maize field crops under phosphorus deficiency. II. Radiation-use efficiency, biomass accumulation and yield components (2000) Plant Soil, 224, pp. 259-272Raghothama, K.G., Karthikeyan, A.S., Phosphate acquisition (2005) Plant Soil, 274, pp. 37-49. , COI: 1:CAS:528:DC%2BD2MXhtVWiurfJRao, I.M., Terry, N., Leaf status, photosynthesis, and carbon partitioning in sugar beet (1995) Plant Physiol, 107, pp. 1313-1321. , COI: 1:CAS:528:DyaK2MXltVClsLg%3D, PID: 12228438Roháček, K., Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships (2002) Photosynthetica, 40, pp. 13-29Rose, T.J., Wissuwa, M., Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops (2012) Adv Agron, 116, pp. 185-217. , COI: 1:CAS:528:DC%2BC38XhslSlur%2FPSato, A.M., Catuchi, T.A., Ribeiro, R.V., Souza, G.M., The use of network analysis to uncover homeostatic responses of a drought-tolerant sugarcane cultivar under severe water deficit and phosphorus supply (2010) Acta Physiol Plant, 32, pp. 1145-1151. , COI: 1:CAS:528:DC%2BC3MXktFahu7s%3DSchachtman, D.P., Reid, R.J., Ayling, S.M., Phosphorus uptake by plants: from soil to cell (1998) Plant Physiol, 116, pp. 447-453. , COI: 1:CAS:528:DyaK1cXht1ajtbc%3D, PID: 9490752Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., Zhang, F., Phosphorus dynamics: from soil to plant (2011) Plant Physiol, 156, pp. 997-1005. , COI: 1:CAS:528:DC%2BC3MXptFWlur0%3D, PID: 21571668Sundara, B., Phosphorus efficiency of sugarcane varieties in a tropical Alfisol (1994) Fertil Res, 39, pp. 83-88. , COI: 1:CAS:528:DyaK2MXktFKmtrg%3DTakahashi, S., Anwar, M.R., Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol (2007) Field Crop Res, 101, pp. 160-171Tennant, D.A., Test of a modified line intersect method of estimating root length (1975) J Ecol, 63, pp. 995-1001van Raij, B., Andarade, J.C., Cantarella, H., Quaggio, J.A., (2001) Análise química para avaliação da fertilidade de solos tropicais, , Instituto Agronômico, Campinas:Vance, C.P., Uhde-Stone, C., Allan, D.L., Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource (2003) New Phytol, 157, pp. 423-447. , COI: 1:CAS:528:DC%2BD3sXisF2gu70%3DWissuwa, M., How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects (2003) Plant Physiol, 133, pp. 1947-1958. , COI: 1:CAS:528:DC%2BD2cXhvFKn, PID: 14605228Wissuwa, M., Gamat, G., Ismail, A.M., Is root growth under phosphorus deficiency affected by source or sink limitations? (2005) J Exp Bot, 56, pp. 1943-1950. , COI: 1:CAS:528:DC%2BD2MXpvFKntb0%3D, PID: 15911558Zambrosi, F.C.B., Adubação com fósforo em cana-soca e sua interação com magnésio (2012) Bragantia, 71, pp. 400-405. , COI: 1:CAS:528:DC%2BC3sXmt1Kmtr4%3DZambrosi, F.C.B., Mattos, D., Jr., Syvertsen, J.P., Plant growth, leaf photosynthesis, and nutrient-use efficiency of citrus rootstocks decrease with phosphite supply (2011) J Plant Nutr Soil Sci, 174, pp. 487-495. , COI: 1:CAS:528:DC%2BC3MXmslahsr4%3DZhao, D., Glaz, B., Comstock, J.C., Physiological and growth responses of sugarcane genotypes to nitrogen rate on a sand soil (2014) J Agron Crop Sci, 200, pp. 290-301. , COI: 1:CAS:528:DC%2BC2cXhtVymurz

    Eficiência de absorção e utilização de fósforo em porta-enxertos cítricos

    No full text
    O porta-enxerto (PE) influencia a nutrição mineral da parte aérea e, consequentemente, a adaptação das árvores cítricas às condições adversas de solo. Considerando que a produtividade dos citros é frequentemente limitada pela baixa disponibilidade de P, foram avaliadas as respostas de crescimento e nutrição fosfatada de plântulas dos PEs limão 'Cravo', citrumelo 'Swingle' e tangerinas 'Cleópatra' e 'Sunki' ao suprimento de 0,0125; 0,05; 0,2; e 0,8 mmol L-1 de P na solução nutritiva. Após 100 dias de tratamentos, os PEs foram coletados e separados em folhas, ramos e sistema radicular para quantificação de massa seca (MS) e determinação do acúmulo de P nessas partes. Cinco dias antes do término do experimento, folhas e raízes foram amostradas para avaliação da atividade da fosfatase ácida. O suprimento de P na solução nutritiva aumentou a área foliar e a produção de MS da parte aérea e das raízes; os teores foliares e o acúmulo de P pelos PEs foram proporcionais à concentração de P na solução nutritiva. Independentemente do tratamento de P, o 'Cravo' apresentou crescimento mais vigoroso, com maior acúmulo de MS e também de P, enquanto as tangerinas foram PEs menos vigorosos. A eficiência de absorção de P (EAP) foi incrementada com o suprimento de P na solução nutritiva, e o 'Swingle' foi o PE com menor EAP. O 'Cravo' foi mais eficiente na conversão do P em biomassa nas raízes e, principalmente, na parte aérea. Houve variação na atividade da fosfatase ácida da raiz, indicando que os PEs apresentam distinta capacidade para aproveitamento do P orgânico do solo. O sistema radicular do 'Cravo' com EAP e atividade da fosfatase ácida nas raízes igual ou mais elevada do que a dos demais PEs, crescimento mais vigoroso e conversão mais eficiente do P em biomassa sugere sua maior adaptação a solos com baixos teores disponíveis de P

    Soil composition and nutritional status of apple as affected by long-term application of gypsum

    No full text
    Gypsum does not affect the soil negative charges and maintains sulfate in the soil solution, making it one of the cheapest products to increase Ca activity in soil solution, especially in the deeper soil layers. Higher Ca levels in the soil solution can increase the uptake of this nutrient by apple trees, reducing the risk of physiological disorders caused by Ca deficiency. This study assessed the effect of long-term gypsum application on some soil properties and on the chemical composition of leaves and fruits of an apple cultivar susceptible to fruit disorders associated with low Ca. The experiment was conducted in São Joaquim, in the South of Brazil, from 2001 to 2009. Gypsum rates of 0, 1.0, 2.0 and 3.0 t ha-1 were annually broadcast over the soil surface, without incorporation, in an apple orchard with cultivar ´Catarina´, planted in 1997. Gypsum application over eight consecutive years had no effect on soil exchangeable K and Al to a depth of 80 cm, but increased exchangeable Ca in the sampled layers (0-10, 10-20, 40-60 and 60-80 cm), while exchangeable Mg decreased only in the surface layer (0-20 cm). Gypsum did not affect the concentration of any nutrient in the fruits, including Ca. The same was verified in the leaves, except for Mg which decreased with increased gypsum rate. Despite increasing the availability of Ca in the soil profile to a depth of 80 cm, gypsum was not effective to increase the Ca content in leaves and fruits of an apple cultivar susceptible to Ca deficiency grown in an appropriately limed soil
    corecore