51 research outputs found

    Addressing disparities in maternal health care in Pakistan: gender, class and exclusion

    Get PDF
    Background: After more than two decades of the Safe Motherhood Initiative and Millennium Development Goals aimed at reducing maternal mortality, women continue to die in childbirth at unacceptably high rates in Pakistan. While an extensive literature describes various programmatic strategies, it neglects the rigorous analysis of the reasons these strategies have been unsuccessful, especially for women living at the economic and social margins of society. A critical gap in current knowledge is a detailed understanding of the root causes of disparities in maternal health care, and in particular, how gender and class influence policy formulation and the design and delivery of maternal health care services. Taking Pakistan as a case study, this research builds upon two distinct yet interlinked conceptual approaches to understanding the phenomenon of inequity in access to maternal health care: social exclusion and health systems as social institutions. Methods/Design: This four year project consists of two interrelated modules that focus on two distinct groups of participants: (1) poor, disadvantaged women and men and (2) policy makers, program managers and health service providers. Module one will employ critical ethnography to understand the key axes of social exclusion as related to gender, class and zaat and how they affect women’s experiences of using maternal health care. Through health care setting observations, interviews and document review, Module two will assess policy design and delivery of maternal health services. Discussion: This research will provide theoretical advances to enhance understanding of the power dynamics of gender and class that may underlie poor women’s marginalization from health care systems in Pakistan. It will also provide empirical evidence to support formulation of maternal health care policies and health care system practices aimed at reducing disparities in maternal health care in Pakistan. Lastly, it will enhance inter-disciplinary research capacity in the emerging field of social exclusion and maternal health and help reduce social inequities and achieve the Millennium Development Goal No. 5

    SARS-CoV-2 variants, spike mutations and immune escape.

    Get PDF
    Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets

    Effects of Combinatorial Treatment with Pituitary Adenylate Cyclase Activating Peptide and Human Mesenchymal Stem Cells on Spinal Cord Tissue Repair

    Get PDF
    The aim of this study is to understand if human mesenchymal stem cells (hMSCs) and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI). To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD) and peroxiredoxin-1/6 (Prx-1 and Prx-6), were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue

    Cellular therapies for treating pain associated with spinal cord injury

    Get PDF
    Spinal cord injury leads to immense disability and loss of quality of life in human with no satisfactory clinical cure. Cell-based or cell-related therapies have emerged as promising therapeutic potentials both in regeneration of spinal cord and mitigation of neuropathic pain due to spinal cord injury. This article reviews the various options and their latest developments with an update on their therapeutic potentials and clinical trialing

    Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation

    No full text
    A highly conserved threonine near the C terminus of gp120 of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) was investigated for its contributions to envelope protein function and virion infectivity. When this highly conserved Thr residue was substituted with anything other than serine (the other amino acid that can accept O-glycosylation), the resulting virus was noninfectious. We found that this Thr was critical for the association of gp120 with the virion and that amino acid substitution increased the amount of dissociated gp120 in the cell culture supernatant. When HIV virions were generated in cells overexpressing polypeptide N-acetylgalactosaminyltransferase 1 (GalNAcT1), viral infectivity was increased 2.5-fold compared to that of virus produced in wild-type HEK293T cells; infectivity was increased 8-fold when the Thr499Ser mutant was used. These infectivity enhancements were not observed when GalNAcT3 was used. Using HEK293T knockout cell lines totally devoid of the ability to perform O-linked glycosylation, we demonstrated production of normal levels of virions and normal levels of infectivity in the complete absence of O-linked carbohydrate. Our data indicate that O-glycosylation is not necessary for the natural replication cycle of HIV and SIV. Nonetheless, it remains theoretically possible that the repertoire of GalNAc transferase isoforms in natural target cells for HIV and SIV in vivo could result in O-glycosylation of the threonine residue in question and that this could boost the infectivity of virions beyond the levels seen in the absence of such O-glycosylation

    HEK293T cell lines defective for O-linked glycosylation

    No full text
    Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE), galactokinase 1 (GALK1), and galactokinase 2 (GALK2) genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc) to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2), O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications
    corecore