888 research outputs found

    How to guide a sustainable industrial economy: Emergy account for resources input of Chinese industry

    Get PDF
    AbstractEmergy analysis provides a feasible approach to evaluate the status and position of different energy carriers in the universal energy hierarchy. In this paper, an emergy-based method is conducted to measure the resources input of Chinese industry from 1997 to 2006. Resources inflows including fossil fuels, mineral resources, agricultural products, and other imported materials are accounted, based on which related indicators including resources intensity, industrial output, and environmental emissions are investigated. Results show a steady upward trend for the total resources input of Chinese industry during the past decade. The total resources input amounted to 1.53×1025 sej in 2006, of which non-renewable one accounted for 70.65% owing to the dominating input of fossil fuels and nonmetal minerals. Resources intensity measured by the ratio of resources input to industrial value added declined gradually during 1997–2002, but the rapid expansion of resource–intensive sub–sectors resulted in a reverse trend since 2003. The current resources use pattern of Chinese industry is characterized by increasing input of non-renewable resources, excessive expansion of resource–intensive production, and tremendous challenge from environmental pressure

    A REAL TIME MONITORING MODEL OF THE CALCIUM CARBONATE FOULING INDUCTION PERIOD BASED ON THE CONDUCTANCE TITRATION

    Get PDF
    A new method has been developed to monitor the calcium carbonate fouling induction period (CCFIP) in real time. Based on the conductance titration, this paper investigated the forming process of CCFIP by a staticdynamic combined simulation experiment unit. With the help of titration analysis (that is titrimetry), an accurate definition of CCFIP and the corresponding real time monitoring model were built up. The investigation results show that the proposed model applies not only to measure the CCFIP in real time, but also applies to an investigation of the influence of various factors on the CCFIP

    A grotesque variant of Silurus asotus (Teleostei: Siluridae) from Hongshuihe River basin, Guizhou, China

    Get PDF
    One grotesque catfish specimen was collected in Zhangjiang River (upper reach of a secondary tributary of Hongshuihe River) in Libo County, Guizhou Province, China. This specimen bears surprising character of four dorsal fins, which have not appeared in any other silurid fishes. But other morphological characters, such as two pairs of barbels, lower jaw projecting beyond upper jaw, the first dorsal fin with one un-branched ray and 4 branched rays, mouth cleft shallow, anterior spine margin of pectoral spine prominently serrated, vomerine tooth band continuous across midline, show much similarities with that of Silurus asotus. This result supports that this variant originated from S. asotus for some special causations. The present study provided description and comparison with S. asotus

    The Vacuum System of HIRFL

    Get PDF
    AbstractThe vacuum system of Heavy Ion Research Facility in Lanzhou (HIRFL) is a large and complex system. HIRFL consists of two ECR ion sources, a sector focus cyclotron (SFC), a separate sector cyclotron (SSC) and a multi-purpose cooling storage ring system which has a main ring (CSRm) and an experiment ring (CSRe). Several beam lines connect these accelerators together and transfer various heavy ion beams to more than 10 experiment terminals. According to the requirements of the ion acceleration and ion lifetime, the working pressure in each accelerator is different. SFC is nearly 50 years old. After upgrade, the working pressure in SFC is improved from 10-6mbar to 10-8mbar. The pressure in SSC which was built in the 1980s reaches the same level. The cooling storage ring system with a length of 500m came into operation in 2007. The average pressures in CSRm and CSRe are 5×10-12mbar and 8×10-12mbar respectively. Different designs were adopt for vacuum system of a dozen beam lines to meet specific requirement of each experiment terminal. Along with the extensive development of the heavy ion researches and applications, new accelerators of HIRFL are under construction. The vacuum system of the new machines will be designed and constructed followed the overall schedule

    Preferential etching by flowing oxygen on the (100) surfaces of HPHT single-crystal diamond

    No full text
    Application of diamond is determined by its oxidation behaviour in some measure. Oxidation process of single-crystal diamond prepared under high pressure and high temperature has been studied by the thermal analysis, scanning electron microscope and Raman spectrometer. The result of a simultaneous thermal analysis indicates that single-crystal diamond is oxidized at ~ 818 °C at a heating rate of 5°C/min in the flowing oxygen. Based on the data of the thermal analysis at different heating rates, the activation energy is calculated by the Kissinger method. A weight loss rate increases with the rising heat treatment temperature from 600 to 800°C. After the oxidation at 800 °C, etch pits emerge on the {100} surfaces of single-crystal diamond, while the {111} surfaces are smooth. Shapes of the etch pits on the {100} surfaces are inverted pyramidal hollows, with edges direction parallel to the direction.Застосування алмазу в якійсь мірі визначається його поведінкою при окисленні. За допомогою термічного аналізу, скануючої електронної мікроскопії і спектроскопії комбінаційного розсіювання світла вивчено процес окислення монокристалічного алмазу, отриманого при високому тиску і високій температурі. Одночасний термічний аналіз показав, що монокристалічний алмаз окислюється при ~ 818 °С при швидкості нагріву 5 °С/хв в потоці кисню. На основі даних термічного аналізу при різних швидкостях нагрівання розраховано енергію активації за методом Кіссінджера. Швидкість втрати ваги зростає з підвищенням температури термообробки від 600 до 800 °C. Після окислення при температурі 800 °С ямки травлення з’являються на поверхні {100} монокристалічного алмазу, в той час як поверхні {111} гладкі. Форма ямок на поверхнях {100} – перевернуті пірамідальні западини з ребрами в напрямку паралельному .Применение алмаза в какой-то мере определяется его поведением при окислении. С помощью термического анализа, сканирующей электронной микроскопии и спектроскопии комбинационного рассеяния света изучен процесс окисления монокристаллического алмаза, полученного при высоком давлении и высокой температуре. Одновременный термический анализ показывает, что монокристаллический алмаз окисляется при ~ 818 °С при скорости нагрева 5 °С/мин в потоке кислорода. На основе данных термического анализа при различных скоростях нагрева рассчитана энергия активации по методу Киссинджера. Скорость потери веса возрастает с повышением температуры термообработки от 600 до 800 °C. После окисления при температуре 800 °С ямки травления появляются на поверхности {100} монокристаллического алмаза, в то время как поверхности {111} гладкие. Форма ямок на поверхностях {100} – перевернутые пирамидальные впадины с ребрами в направлении параллельном

    Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Get PDF
    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30-60 degree hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators

    Wide-angle electron beams from laser-wakefield accelerators

    Get PDF
    Advances in laser technology have driven the development of laser-wakefield accelerators, compact devices that are capable of accelerating electrons to GeV energies over centimetre distances by exploiting the strong electric field gradients arising from the interaction of intense laser pulses with an underdense plasma. A side-effect of this acceleration mechanism is the production of high-charge, low-energy electron beams at wide angles. Here we present an experimental and numerical study of the properties of these wide-angle electron beams, and show that they carry off a significant fraction of the energy transferred from the laser to the plasma. These high-charge, wide-angle beams can also cause damage to laser-wakefield accelerators based on capillaries, as well as become source of unwanted bremsstrahlung radiation

    Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

    Get PDF
    In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits

    Collimation of high current fast electrons in dense plasmas with a tightly focused precursor intense laser pulse

    Get PDF
    High-current fast electrons at the mega-ampere level provide a unique way to generate high-energy density states of matter, which are related to many applications. However, the large divergence angle of fast electrons typically over 50 degrees is a significant disadvantage. The guiding effect of the self-generated azimuthal magnetic fields on fast electron current is found to be very limited due to the cone-shaped spatial structure of the fields. In this work, we present a new understanding of the collimation conditions of fast electrons under such a magnetic field structure. It is shown that the transverse peak position of the magnetic field layer plays a more crucial role in collimating the fast electrons than its magnitude. Based upon this, a new two-pulse collimating scheme is proposed, where a guiding precursor pulse is adopted to form proper azimuthal magnetic fields and the main pulse is for fast electron generation as usual. The present scheme can be implemented relatively easily with the precursor lasers at the 10 TW level with a duration of 200 femtoseconds, with which the divergence angle of fast electrons driven by the main pulse can be confined within a few degrees. Practical applications of our scheme can be found in high-energy density science
    corecore