10 research outputs found
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots
A detailed Raman characterization of the structural properties of as-grown and annealed self-assembled Si/Ge dot multilayers is reported in this paper. Several new modes in as-grown or annealed Si/Ge dots and a frequency splitting of 4.2 cm(-1) between the longitudinal (LO) and transversal optical (TO) Ge-Ge modes in as-grown Si/Ge dots are observed in Raman spectra. An average Ge content of 0.8 and lateral strain of -3.4% are consistently obtained from these spectral features for as-grown Si/Ge dots with a lateral size of about 20 nm and a height of about 2 nm. It suggests that a certain amount of intermixing between Si spacer layers and Si/Ge dots takes place for the Si/Ge dot multilayers. The annealing behavior of the Ge-Si mode in Si/Ge dots indicates that the observed sharp Ge-Si mode is a Ge-Si alloy mode within the core regions of Si/Ge dots, rather than a Ge-Si interface mode in the interface regions of dots. The phonon strain-shift coefficients of the Ge-Ge and Ge-Si modes are determined for the small-sized Si/Ge dots with a high Ge content under a biaxial strain condition. The results show that the LO-TO frequency splitting of the Ge-Ge mode and the frequencies of the Ge-Ge and Ge-Si modes can be used as an efficient way to determine the average strain and composition in uncorrelated small-sized Si/Ge dot multilayers in which the mean strain field is close to the biaxial case