11 research outputs found

    Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by Friction Stir Welding (FSW)

    Get PDF
    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ

    Co-Fe-Si (cobalt-iron-silicon)

    No full text

    Modeling of the atomic ordering processes in Fe3Al intermetallics by the monte carlo simulation method combined with electronic theory of alloys

    No full text
    The evolution of atomic ordering processes in Fe3Al has been modeled by the Monte Carlo (MC) simulation method combined with the electronic theory of alloys in pseudopotential approximation. The magnitude of atomic ordering energies of atomic pairs in the Fe3Al system has been calculated by means of electronic theory in pseudopotential approximation up to sixth coordination spheres and subsequently used as input data for MC simulation for more detailed analysis for the first time. The Bragg–Williams long-range order (LRO) and Cowley–Warren short-range order (SRO) parameters have been calculated from the equilibrium configurations attained at the end of MC simulation for each predefined temperature and Al concentration levels, which reveal the evolution of the system from DO3 → B2 → disordered state as temperature increases. The variation of ordering parameters with temperature has identified the transition temperature from DO3 → B2 type superlattice, and from B2 → disordered (a) solid solution at about 540 °C and .900 °C, respectively, showing good qualitative agreement with experimental results. The results of the present study imply that combination of electronic theory of alloys in pseudopotential approximation with MC simulation can be successfully applied for qualitative or semiquantitative analysis of energetical and structural characteristics of atomic ordering processes in Fe3Al intermetallics
    corecore