6 research outputs found

    Root‐lesion nematodes of potato: current status of diagnostics, pathogenicity and management

    Get PDF
    Root‐lesion nematodes of the genus Pratylenchus are migratory endoparasites with worldwide economic impact on several important crops including potato, where certain species like P. penetrans, P. neglectus and P. scribneri reduce the yield and quality of potato tubers. Morphological identification of Pratylenchus spp. is challenging, and recent advancements in molecular techniques provide robust and rapid diagnostics to differentiate species without need of specialist skills. However, the fact that molecular diagnostics are not available for all Pratylenchus species means that there are limitations in worldwide application. In general, root‐lesion nematodes are difficult to manage once introduced into agricultural land and damage can be related to pathogenicity and population densities. In addition, root‐lesion nematodes interact with fungi such as V. dahliae, resulting in disease complexes that enhance the damage inflicted on the potato crop. Management interventions are often focused on limiting nematode reproduction before planting crops and include the application of nematicides, and cultural practices such as crop rotation, cover crops, biofumigation, and biological control. Understanding the limitations of the available crop protection strategies is important and there are many gaps for further study. This review discusses the status of the diagnosis, distribution, pathogenicity and management of the main species of root‐lesion nematodes, reported to infect potatoes worldwide, and highlights areas for potential future research

    Characterization of the Cystoid Nematode Meloidoderita kirjanovae (Nemata: Sphaeronematidae) from Southern Italy

    Get PDF
    A population of the cystoid nematode Meloidoderita kirjanovae was detected parasitizing water mint (Mentha aquatica) in southern Italy. The morphological identification of this species was confirmed by molecular analysis using the internal transcribed spacer 1 (ITS1) and 5.8S gene sequences of nuclear ribosomal DNA (rDNA), which clearly separated it from the closely related species Meloidoderita polygoni. A phylogenetic analysis of M. kirjanovae with species of related genera was conducted using sequences of the D2-D3 expansion segments of the 28S nuclear ribosomal RNA gene. The resulting phylogenetic tree was congruent with trees from an extended dataset for Criconematina and Tylenchida. The basal position of the genus Meloidoderita together with Sphaeronema within the Criconematina clade in this tree may indicate their close relationships. The anatomical changes induced by M. kirjanovae population from Italy in water mint were similar to those reported for a nematode population infecting roots of M. longifolia in Israel. Nematode feeding caused the formation of a stellar syncytium that disorganized the pericycle and vascular root tissues
    corecore