29,357 research outputs found
A Functional Approach to FBSDEs and Its Application in Optimal Portfolios
In Liang et al (2009), the current authors demonstrated that BSDEs can be
reformulated as functional differential equations, and as an application, they
solved BSDEs on general filtered probability spaces. In this paper the authors
continue the study of functional differential equations and demonstrate how
such approach can be used to solve FBSDEs. By this approach the equations can
be solved in one direction altogether rather than in a forward and backward
way. The solutions of FBSDEs are then employed to construct the weak solutions
to a class of BSDE systems (not necessarily scalar) with quadratic growth, by a
nonlinear version of Girsanov's transformation. As the solving procedure is
constructive, the authors not only obtain the existence and uniqueness theorem,
but also really work out the solutions to such class of BSDE systems with
quadratic growth. Finally an optimal portfolio problem in incomplete markets is
solved based on the functional differential equation approach and the nonlinear
Girsanov's transformation.Comment: 26 page
Impulse Generation by an Open Shock Tube
We perform experimental and numerical studies of a shock tube with an open end. The purpose is to investigate the impulse due to the exhaust of gases through the open end of the tube as a model for a partially filled detonation tube as used in pulse detonation engine testing. We study the effects of the pressure ratio (varied from 3 to 9.2) and the volume ratio (expressed as fill fractions) between the driver and driven section. Two different driver gases, helium and nitrogen, and fill fractions between 5 and 100% are studied; the driven section is filled with air. For both driver gases, increasing the pressure ratio leads to larger specific impulses. The specific impulse increases for a decreasing fill fraction for the helium driver, but the impulse is almost independent of the fill fraction for the nitrogen driver. Two-dimensional (axisymmetric) numerical simulations are carried out for both driver gases. The simulation results show reasonable agreement with experimental measurements at high pressure ratios or small fill fractions, but there are substantial discrepancies for the smallest pressure ratios studied. Empirical models for the impulse in the limits of large and small fill fractions are also compared with the data. Reasonable agreement is found for the trends with fill fractions using the Gurney or Sato model at large fill fractions, but only Cooper’s bubble model is able to predict the small fill fraction limit. Computations of acoustic impedance and numerical simulations of unsteady gas dynamics indicate that the interaction of waves with the driver-driven gas interface and the propagation of waves in the driven gas play an essential role in the partial-fill effect
Universal Structure of Twist-3 Soft-Gluon-Pole Cross Sections for Single Transverse-Spin Asymmetry
We prove that twist-3 soft-gluon-pole (SGP) cross section for single spin
asymmetries (SSA) is determined by a certain ``primordial'' twist-2 cross
section up to kinematic and color factors in the leading order perturbative
QCD. In particular, for the processes in which the partonic hard scattering
occurs among massless partons, the invariance of the ``primordial'' partonic
cross section under scale transformation leads to remarkable simplification of
the SGP cross section, reproducing compact form that was recently observed for
pion production and direct-photon production
.Comment: 5 pages in LaTex. 2 figures. Minor modifications in the tex
Sectoral r modes and periodic RV variations of Sun-like stars
Radial velocity (RV) measurements are used to search for planets orbiting
late-type main-sequence stars and confirm the transiting planets. The most
advanced spectrometers are approaching a precision of cm/s that
implies the need to identify and correct for all possible sources of RV
oscillations intrinsic to the star down to this level and possibly beyond. The
recent discovery of global-scale equatorial Rossby waves in the Sun, also
called r modes, prompted us to investigate their possible signature in stellar
RV measurements. R modes are toroidal modes of oscillation whose restoring
force is the Coriolis force and propagate in the retrograde direction in a
frame that corotates with the star. The solar r modes with azimuthal orders were identified unambiguously because of their dispersion
relation and their long e-folding lifetimes of hundreds of days. Here we
simulate the RV oscillations produced by sectoral r modes with assuming a stellar rotation period of 25.54 days and a maximum amplitude of
the surface velocity of each mode of 2 m/s. This amplitude is representative of
the solar measurements, except for the mode which has not yet been
observed. Sectoral r modes with azimuthal orders and would produce RV
oscillations with amplitudes of 76.4 and 19.6 cm/s and periods of 19.16 and
10.22 days, respectively, for a star with an inclination of the rotation axis
. Therefore, they may produce rather sharp peaks in the Fourier
spectrum of the radial velocity time series that could lead to spurious
planetary detections. Sectoral r~modes may represent a source of confusion in
the case of slowly rotating inactive stars that are preferential targets for RV
planet search. The main limitation of the present investigation is the lack of
observational constraint on the amplitude of the mode on the Sun.Comment: 7 pages; 4 figures; 1 table; accepted to Astronomy & Astrophysic
-decay half-lives of neutron-rich nuclei and matter flow in the -process
The -decay half-lives of neutron-rich nuclei with are systematically investigated using the newly developed fully
self-consistent proton-neutron quasiparticle random phase approximation (QRPA),
based on the spherical relativistic Hartree-Fock-Bogoliubov (RHFB) framework.
Available data are reproduced by including an isospin-dependent proton-neutron
pairing interaction in the isoscalar channel of the RHFB+QRPA model. With the
calculated -decay half-lives of neutron-rich nuclei a remarkable
speeding up of -matter flow is predicted. This leads to enhanced -process
abundances of elements with , an important result for the
understanding of the origin of heavy elements in the universe.Comment: 14 pages, 4 figure
Nuclear charge-exchange excitations in localized covariant density functional theory
The recent progress in the studies of nuclear charge-exchange excitations
with localized covariant density functional theory is briefly presented, by
taking the fine structure of spin-dipole excitations in 16O as an example. It
is shown that the constraints introduced by the Fock terms of the relativistic
Hartree-Fock scheme into the particle-hole residual interactions are
straightforward and robust.Comment: 4 pages, 1 figure, Proceedings of INPC2013, Florence, Italy, 2-7 June
201
Experimental data on the single spin asymmetry and their interpretations by the chromo-magnetic string model
An attempt is made to interpret the various existing experimental data on the
single spin asymmetries in inclusive pion production by the polarized proton
and antiproton beams. As the basis of analysis the chromo-magnetic string model
is used. A whole measured kinematic region is covered. The successes and fails
of such approach are outlined. The possible improvements of model are
discussed.Comment: 17 pages, 3 figure
- …