58,904 research outputs found

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures

    Anisotropy in the magnetic and electrical transport properties of Fe1-xCrxSb2

    Full text link
    We have investigated anisotropy in magnetic and electrical transport properties of Fe1-xCrxSb2 (0<= x <=1) single crystals. The magnetic ground state of the system evolves from paramagnetic to antiferromagnetic with gradual substitution of Fe with Cr. Anisotropy in electrical transport diminishes with increased Cr substitution and fades away by x=0.5. We find that the variable range hopping (VRH) conduction mechanism dominates at low temperatures for 0.4<= x <=0.75.Comment: 5 pages, 6 figure

    Importance of tetrahedral coordination for high-valent transition metal oxides: YCrO4_4 as a model system

    Full text link
    We have investigated the electronic structure of the high oxidation state material YCrO4_4 within the framework of the Zaanen-Sawatzky-Allen phase diagram. While Cr4+^{4+}-based compounds like SrCrO3_3/CaCrO3_3 and CrO2_2 can be classified as small-gap or metallic negative-charge-transfer systems, we find using photoelectron spectroscopy that YCrO4_4 is a robust insulator despite the fact that its Cr ions have an even higher formal valence state of 5+. We reveal using band structure calculations that the tetrahedral coordination of the Cr5+^{5+} ions in YCrO4_4 plays a decisive role, namely to diminish the bonding of the Cr 3d3d states with the top of the O 2p2p valence band. This finding not only explains why the charge-transfer energy remains effectively positive and the material stable, but also opens up a new route to create doped carriers with symmetries different from those of other transition-metal ions.Comment: 6 pages, 6 figure

    Accumulation of three-body resonances above two-body thresholds

    Get PDF
    We calculate resonances in three-body systems with attractive Coulomb potentials by solving the homogeneous Faddeev-Merkuriev integral equations for complex energies. The equations are solved by using the Coulomb-Sturmian separable expansion approach. This approach provides an exact treatment of the threshold behavior of the three-body Coulombic systems. We considered the negative positronium ion and, besides locating all the previously know SS-wave resonances, we found a whole bunch of new resonances accumulated just slightly above the two-body thresholds. The way they accumulate indicates that probably there are infinitely many resonances just above the two-body thresholds, and this might be a general property of three-body systems with attractive Coulomb potentials.Comment: 4 pages, 3 figure

    Dynamic Magneto-Conductance Fluctuations and Oscillations in Mesoscopic Wires and Rings

    Get PDF
    Using a finite-frequency recursive Green's function technique, we calculate the dynamic magneto-conductance fluctuations and oscillations in disordered mesoscopic normal metal systems, incorporating inter-particle Coulomb interactions within a self-consistent potential method. In a disordered metal wire, we observe ergodic behavior in the dynamic conductance fluctuations. At low ω\omega, the real part of the conductance fluctuations is essentially given by the dc universal conductance fluctuations while the imaginary part increases linearly from zero, but for ω\omega greater than the Thouless energy and temperature, the fluctuations decrease as ω1/2\omega^{-1/2}. Similar frequency-dependent behavior is found for the Aharonov-Bohm oscillations in a metal ring. However, the Al'tshuler-Aronov-Spivak oscillations, which predominate at high temperatures or in rings with many channels, are strongly suppressed at high frequencies, leading to interesting crossover effects in the ω\omega-dependence of the magneto-conductance oscillations.Comment: 4 pages, REVTeX 3.0, 5 figures(ps file available upon request), #phd0

    A portable MBE system for in situ X-Ray investigations at synchrotron beamlines

    Get PDF
    A portable synchrotron MBE system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, RHEED setup and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in-vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate it's performance by investigating the annealing process of buried InGaAs self organized quantum dots

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity

    Three-potential formalism for the three-body scattering problem with attractive Coulomb interactions

    Get PDF
    A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-Schwinger and Faddeev-Merkuriev integral equations. We solve them by applying the Coulomb-Sturmian separable expansion method. We present elastic scattering and reaction cross sections of the e++He^++H system both below and above the H(n=2)H(n=2) threshold. We found excellent agreements with previous calculations in most cases.Comment: 12 pages, 3 figure
    corecore