485 research outputs found

    Designing and implementing a GPS-based vehicle navigation application for Eclipse Kuksa

    Get PDF
    Abstract. With the development of the Internet of Things (IoT), connected cars are rapidly becoming an essential milestone in the design of intelligent transportation systems and a key element in smart city design. Connected cars use a three-layer client-connection-cloud architecture, and car sensors are located at the client layer. This architecture provides the driver with a large amount of data about the external environment, which reduces the number of traffic accidents and helps the car drive safely. Driving safety is the most critical design factor for next-generation vehicles. The future vision of the automotive industry is self-driving cars. However, it faces some challenges. Eclipse Kuksa provides solutions to challenges in the field of connected cars. A comprehensive ecosystem includes a complete tool stack for connected vehicles, including a vehicle platform, a cloud platform, and an application development Integrated Development Environment (IDE). Its essential function is to collect, store, and analyze vehicle data and transmit various information in the cloud. This master’s thesis aims to investigate a Global Positioning System (GPS) -based vehicle navigation application on the vehicle and cloud platforms of Eclipse Kuksa, understand how to develop a GPS-based vehicle navigation application using the Eclipse Kuksa software platform, and discuss the advantages and challenges of using Eclipse Kuksa to develop vehicle applications. The research methods are Design Science Research (DSR) and literature review. System development is carried out following the Design Science Research Methodology (DSRM) Process, developed and evaluated on the vehicle navigation application. The application artifact consists of the Eclipse Kuksa vehicle platform and cloud platform. The steps described in this paper can be used to build vehicle applications in Eclipse Kuksa. This paper also explains the benefits and challenges of using Eclipse Kuksa to develop vehicle applications. The main benefit is that open source solutions break the long-term closed development model of the automotive industry and establish a vehicle-to-cloud solution standard to meet the IoT challenges to the automotive industry. Simultaneously the challenge of using Eclipse Kuksa is the complexity of environment construction and the software and hardware compatibility

    A CrC^{r} Closing Lemma for a Class of Symplectic Diffeomorphisms

    Full text link
    We prove a CrC^r closing lemma for a class of partially hyperbolic symplectic diffeomorphisms. We show that for a generic CrC^r symplectic diffeomorphism, r=1,2,...,r =1, 2, ...,, with two dimensional center and close to a product map, the set of all periodic points is dense

    Heterogeneous Multi-wavelength Optical Injection Locked System-on-chip: a Proposal & Proof-of-concept Experiment

    Get PDF
    We present proof-of-concept work towards an integrated multi-λ optical injection locked system-on-chip using just one master laser. Tremendous improvement of direct modulation (4→20 Gb/s) and single-mode operation on slave microring laser was achieved

    Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Get PDF
    This is the published version. Copyright 2014 American Institute of PhysicsAtomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers

    Integrating Atomic Layer Deposition and Ultra-High Vacuum Physical Vapor Deposition for In Situ Fabrication of Tunnel Junctions

    Get PDF
    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barrier using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb/Al/Al2O3/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~ 1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.Comment: 25 pages, 13 figures, 1 tabl

    Low-Power Distributed Data Flow Anomaly-Monitoring Technology for Industrial Internet of Things

    Get PDF
    . In recent years, the industrial use of the internet of things (IoT) has been constantly growing and is now widespread. Wireless sensor networks (WSNs) are a fundamental technology that has enabled such prevalent adoption of IoT in industry. WSNs can connect IoT sensors and monitor the working conditions of such sensors and of the overall environment, as well as detect unexpected system events in a timely and accurate manner. Monitoring large amounts of unstructured data generated by IoT devices and collected by the big-data analytics systems is a challenging task. Furthermore, detecting anomalies within the vast amount of data collected in real time by a centralized monitoring system is an even bigger challenge. In the context of the industrial use of the IoT, solutions for monitoring anomalies in distributed data flow need to be explored. In this paper, a low-power distributed data flow anomaly-monitoring model (LP-DDAM) is proposed to mitigate the communication overhead problem. As the data flow monitoring system is only interested in anomalies, which are rare, and the relationship among objects in terms of the size of their attribute values remains stable within any specific period of time, LP-DDAM integrates multiple objects as a comple

    A Practical Neighbor Discovery Framework for Wireless Sensor Networks

    Get PDF
    Neighbor discovery is a crucial operation frequently executed throughout the life cycle of a Wireless Sensor Network (WSN). Various protocols have been proposed to minimize the discovery latency or to prolong the lifetime of sensors. However, none of them have addressed that all the critical concerns stemming from real WSNs, including communication collisions, latency constraints and energy consumption limitations. In this paper, we propose Spear, the first practical neighbor discovery framework to meet all these requirements. Spear offers two new methods to reduce communication collisions, thus boosting the discovery rate of existing neighbor discovery protocols. Spear also takes into consideration latency constraints and facilitate

    Automated vulnerability discovery and exploitation in the internet of things

    Get PDF
    Recently, automated software vulnerability detection and exploitation in Internet of Things (IoT) has attracted more and more attention, due to IoT’s fast adoption and high social impact. However, the task is challenging and the solutions are non-trivial: the existing methods have limited effectiveness at discovering vulnerabilities capable of compromising IoT systems. To address this, we propose an Automated Vulnerability Discovery and Exploitation framework with a Scheduling strategy, AutoDES that aims to improve the efficiency and effectiveness of vulnerability discovery and exploitation. In the vulnerability discovery stage, we use our Anti-Driller technique to mitigate the “path explosion” problem. This approach first generates a specific input proceeding from symbolic execution based on a Control Flow Graph (CFG). It then leverages a mutation-based fuzzer to find vulnerabilities while avoiding invalid mutations. In the vulnerability exploitation stage, we analyze the characteristics of vulnerabilities and then propose to generate exploits, via the use of several proposed attack techniques that can produce a shell based on the detected vulnerabilities. We also propose a genetic algorithm (GA)-based scheduling strategy (AutoS) that helps with assigning the computing resources dynamically and efficiently. The extensive experimental results on the RHG 2018 challenge dataset and the BCTF-RHG 2019 challenge dataset clearly demonstrate the effectiveness and efficiency of the proposed framework

    Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.</p> <p>Methods</p> <p>Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.</p> <p>Results</p> <p>The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.</p> <p>Conclusion</p> <p>The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.</p
    corecore