17,826 research outputs found

    Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction

    Full text link
    The electron addition spectrum A^+(k,omega) is obtained analytically for the one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The result is obtained first for a small-sized system and its validity is checked against the numerical calculation. Then the general expression is found which is valid for arbitrary size of the system. The thermodynamic limit of A^+(k,omega) has a simple analytic form with contributions from one spinon, one holon and one antiholon all of which obey fractional statistics. The upper edge of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Spin-Charge Separation at Finite Temperature in the Supersymmetric t-J Model with Long-Range Interactions

    Full text link
    Thermodynamics is derived rigorously for the 1D supersymmetric {\it t-J} model and its SU(K,1K,1) generalization with inverse-square exchange. The system at low temperature is described in terms of spinons, antispinons, holons and antiholons obeying fractional statistics. They are all free and make the spin susceptibility independent of electron density, and the charge susceptibility independent of magnetization. Thermal spin excitations responsible for the entropy of the SU(K,1K,1) model are ascribed to free para-fermions of order K−1K-1.Comment: 10 pages, REVTE

    Combinatorial interpretation of Haldane-Wu fractional exclusion statistics

    Full text link
    Assuming that the maximal allowed number of identical particles in state is an integer parameter, q, we derive the statistical weight and analyze the associated equation which defines the statistical distribution. The derived distribution covers Fermi-Dirac and Bose-Einstein ones in the particular cases q = 1 and q -> infinity (n_i/q -> 1), respectively. We show that the derived statistical weight provides a natural combinatorial interpretation of Haldane-Wu fractional exclusion statistics, and present exact solutions of the distribution equation.Comment: 8 pages, 2 eps-figure

    Exact dynamical structure factor of the degenerate Haldane-Shastry model

    Full text link
    The dynamical structure factor S(q,ω)S(q,\omega) of the K-component (K = 2,3,4) spin chain with the 1/r^2 exchange is derived exactly at zero temperature for arbitrary size of the system. The result is interpreted in terms of a free quasi-particle picture which is generalization of the spinon picture in the SU(2) case; the excited states consist of K quasi-particles each of which is characterized by a set of K-1 quantum numbers. Divergent singularities of S(q,ω)S(q,\omega) at the spectral edges are derived analytically. The analytic result is checked numerically for finite systems.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Green Function of the Sutherland Model with SU(2) internal symmetry

    Full text link
    We obtain the hole propagator of the Sutherland model with SU(2) internal symmetry for coupling parameter β=1\beta=1, which is the simplest nontrivial case. One created hole with spin down breaks into two quasiholes with spin down and one quasihole with spin up. While these elementary excitations are energetically free, the form factor reflects their anyonic character. The expression for arbitrary integer β\beta is conjectured.Comment: 13pages, Revtex, one ps figur

    Quantum Shock Waves - the case for non-linear effects in dynamics of electronic liquids

    Full text link
    Using the Calogero model as an example, we show that the transport in interacting non-dissipative electronic systems is essentially non-linear. Non-linear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for non-linear systems, propagating wave packets are unstable. At finite time shock wave singularities develop, the wave packet collapses, and oscillatory features arise. They evolve into regularly structured localized pulses carrying a fractionally quantized charge - {\it soliton trains}. We briefly discuss perspectives of observation of Quantum Shock Waves in edge states of Fractional Quantum Hall Effect and a direct measurement of the fractional charge

    Exactly Solvable Pairing Model Using an Extension of Richardson-Gaudin Approach

    Full text link
    We introduce a new class of exactly solvable boson pairing models using the technique of Richardson and Gaudin. Analytical expressions for all energy eigenvalues and first few energy eigenstates are given. In addition, another solution to Gaudin's equation is also mentioned. A relation with the Calogero-Sutherland model is suggested.Comment: 9 pages of Latex. In the proceedings of Blueprints for the Nucleus: From First Principles to Collective Motion: A Festschrift in Honor of Professor Bruce Barrett, Istanbul, Turkey, 17-23 May 200

    Global Newtonian limit for the Relativistic Boltzmann Equation near Vacuum

    Full text link
    We study the Cauchy Problem for the relativistic Boltzmann equation with near Vacuum initial data. Unique global in time "mild" solutions are obtained uniformly in the speed of light parameter c≥1c \ge 1. We furthermore prove that solutions to the relativistic Boltzmann equation converge to solutions of the Newtonian Boltzmann equation in the limit as c→∞c\to\infty on arbitrary time intervals [0,T][0,T], with convergence rate 1/c2−ϵ1/c^{2-\epsilon} for any ϵ∈(0,2)\epsilon \in(0,2). This may be the first proof of unique global in time validity of the Newtonian limit for a Kinetic equation.Comment: 35 page

    Design optimization of an interior-type permanent magnet BLDC motor using PSO and improved MEC

    Full text link
    In this paper, an improved magnetic equivalent circuit (MEC) is applied to calculate the nonlinear magnetic field in an interior-type permanent-magnet (IPM) brushless DC (BLDC) motor. Compared with the finite element method, the MEC method is much more time efficient, whereas compared with the conventional MEC method, the improved MEC is more accurate since it takes the complicate topological structure of the motor into account. A rough design of the IPM BLDC motor was firstly conducted by the improved MEC method. The particle swarm optimization (PSO) algorithm is then employed to refine the design for optimal structural parameters that result in the lowest cost and highest performance
    • …
    corecore