164 research outputs found

    Thin film Gallium nitride (GaN) based acoustofluidic Tweezer: Modelling and microparticle manipulation.

    Get PDF
    Gallium nitride (GaN) is a compound semiconductor which shows advantages in new functionalities and applications due to its piezoelectric, optoelectronic, and piezo-resistive properties. This study develops a thin film GaN-based acoustic tweezer (GaNAT) using surface acoustic waves (SAWs) and demonstrates its acoustofluidic ability to pattern and manipulate microparticles. Although the piezoelectric performance of the GaNAT is compromised compared with conventional lithium niobate-based SAW devices, the inherited properties of GaN allow higher input powers and superior thermal stability. This study shows for the first time that thin film GaN is suitable for the fabrication of the acoustofluidic devices to manipulate microparticles with excellent performance. Numerical modelling of the acoustic pressure fields and the trajectories of mixtures of microparticles driven by the GaNAT was performed and the results were verified from the experimental studies using samples of polystyrene microspheres. The work has proved the robustness of thin film GaN as a candidate material to develop high-power acoustic tweezers, with the potential of monolithical integration with electronics to offer diverse microsystem applications.Engineering and Physical Sciences Research Council Grant numbers: EP/P002803/1, EP/P018998/1, Natural Science Basic Research Program of Shaanxi Province/2020JQ-233, Fundamental Scientific Research of Central Universities/3102017OQD116, Engineering and Physical Sciences Research Council fellowship /EP/N01202X/2, Royal Society / IEC/NSFC/170142, IE161019, Natural Science Foundation of China/61704017, Dalian Science and Technology Innovation Fund/2018J11CY00

    Precise determination of stellar parameters of the ZZ Ceti and DAZ white dwarf GD 133 through asteroseismology

    Full text link
    An increasing number of white dwarf stars show atmospheric chemical composition polluted by heavy elements accreted from debris disk material. The existence of such debris disks strongly suggests the presence of one or more planet(s) whose gravitational interaction with rocky planetesimals is responsible for their disruption by tidal effect. The ZZ Ceti pulsator and polluted DAZ white dwarf GD 133 is a good candidate for searching for such a potential planet. We started in 2011 a photometric follow-up of its pulsations. As a result of this work in progress, we used the data gathered from 2011 to 2015 to make an asteroseismological analysis of GD 133, providing the star parameters from a best fit model with MM/M⊙M_{\odot} = 0.630 ±\pm 0.002, TeffT_{\rm eff} = 12400 K ±\pm 70 K, log(MHe/MM_{\rm He}/M) = -2.00 ±\pm 0.02, log(MH/MM_{\rm H}/M) = -4.50 ±\pm 0.02 and determining a rotation period of ≈\approx 7 days.Comment: 10 pages, 13 figures, accepted by MNRA

    Study on alkali liquor roasting and sulphuric acid leaching of bayan obo rare earth concentrate

    Get PDF
    Take the roasted ore after the alkali liquor roasting and decomposition of Bayan Obo rare earth concentrate as the raw material, and use the sulphuric acid leaching to extract the elements including rare earth, thorium, tetravalent cerium, etc. The influence on the leaching of rare earth, thorium, tetravalent cerium made by the leaching conditions including mineral acid ratio, initial acidity, leaching temperature, and leaching time is researched. The result shows: when the mineral acid mass ratio is 1:1,1, the initial acid concentration is 6 mol/L, the reaction temperature is 90 °C, and the reaction time is 120 min, the gross leaching rate of rare earth is greater than 95 %, and the leaching rate of tetravalent cerium and thorium is greater than 97 %

    The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a N=4\mathcal N=4 Super Yang-Mills Vacuum

    Full text link
    Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the N=4{\cal N}=4 supersymmetric Yang-Mills theory at large NcN_c is carried out to the sub-leading term in the large 't Hooft coupling at zero temperature. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The singularities of these determinants are examined and their contributions are evaluated numerically.Comment: Updated version with minor typo corrections and new reference

    Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics

    Get PDF
    Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl3) and calcium chloride (CaCl2), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H+) and hydroxide ion (OH−) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl3 and CaCl2 caused soil Fe and Cl residuals and led to 4.33–7.59% and 139–172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields
    • 

    corecore