157 research outputs found

    Modeling growth of specific spoilage organisms in tilapia: Comparison Baranyi with chi-square automatic interaction detection (CHAID) model

    Get PDF
    Tilapia is an important aquatic fish, but severe spoilage of tilapia is most likely related to the global aquaculture. The spoilage is mostly caused by specific spoilage organisms (SSO). Therefore, it is very important to use microbial models to predict the growth of SSO in tilapia. This study firstly verified Pseudomonas and Vibrio as the SSO of tilapia, then established microbial growth models based on Baranyi and chi-square automatic interaction detection (CHAID) models and compared their effectiveness. The results showed that both Baranyi model and CHAID model are appropriate for predicting the growth of microorganism. Baranyi model fits the microorganism growth better than CHAID model overall though CHAID model fits well at stationary phase. CHAID model predicts the microorganism growth accurately when the rate of change of the experiment data is big.Key words: Specific spoilage organisms (SSO), tilapia, chi-square automatic interaction detection (CHAID), Baranyi, shelf-life

    Ultracold Gas of Dipolar NaCs Ground State Molecules

    Full text link
    We report on the creation of bosonic NaCs molecules in their absolute rovibrational ground state via stimulated Raman adiabatic passage. We create ultracold gases with up to 22,000 dipolar NaCs molecules at a temperature of 300(50) nK and a peak density of 1.0(4)×10121.0(4) \times 10^{12} cm3^{-3}. We demonstrate comprehensive quantum state control by preparing the molecules in a specific electronic, vibrational, rotational, and hyperfine state. Employing the tunability and strength of the permanent electric dipole moment of NaCs, we induce dipole moments of up to 2.6 D. Dipolar systems of NaCs molecules are uniquely suited to explore strongly interacting phases in dipolar quantum matter.Comment: 6 pages, 5 figure

    Efficient Pathway to NaCs Ground State Molecules

    Full text link
    We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900~nm to 940~nm, covering more than 30 vibrational states of the c \, ^3\Sigma^+, b \, ^3\Pi, and B \, ^1\Pi electronic states. Analyzing the rotational substructure, we identify the highly mixed c \, ^3\Sigma^+_1 \, |v=22 \rangle \sim b \, ^3\Pi_1 \, | v=54\rangle state as an efficient bridge for stimulated Raman adiabatic passage (STIRAP). We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)\%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays.Comment: 17 pages, 8 figure

    A High Phase-Space Density Gas of NaCs Feshbach Molecules

    Full text link
    We report on the creation of ultracold gases of bosonic Feshbach molecules of NaCs. The molecules are associated from overlapping gases of Na and Cs using a Feshbach resonance at 864.12(5) G. We characterize the Feshbach resonance using bound state spectroscopy, in conjunction with a coupled-channel calculation. By varying the temperature and atom numbers of the initial atomic mixtures, we demonstrate the association of NaCs gases over a wide dynamic range of molecule numbers and temperatures, reaching 70 nK for our coldest systems and a phase-space density (PSD) near 0.1. This is an important stepping-stone for the creation of degenerate gases of strongly dipolar NaCs molecules in their absolute ground state.Comment: 6 pages, 5 figures, supplemental materia

    Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury

    Get PDF
    Mechanical stress and hypoxia during episodes of ocular hypertension (OHT) trigger glial activation and neuroinflammation in the retina. Glial activation and release of pro-inflammatory cytokines TNFα and IL-1β, complement, and other danger factors was shown to facilitate injury and loss of retinal ganglion cells (RGCs) that send visual information to the brain. However, cellular events linking neuroinflammation and neurotoxicity remain poorly characterized. Several pro-inflammatory and danger signaling pathways, including P2X7 receptors and Pannexin1 (Panx1) channels, are known to activate inflammasome caspases that proteolytically activate gasdermin D channel-formation to export IL-1 cytokines and/or induce pyroptosis. In this work, we used molecular and genetic approaches to map and characterize inflammasome complexes and detect pyroptosis in the OHT-injured retina. Acute activation of distinct inflammasome complexes containing NLRP1, NLRP3 and Aim2 sensor proteins was detected in RGCs, retinal astrocytes and Muller glia of the OHT-challenged retina. Inflammasome-mediated activation of caspases-1 and release of mature IL-1β were detected within 6 h and peaked at 12–24 h after OHT injury. These coincided with the induction of pyroptotic pore protein gasdermin D in neurons and glia in the ganglion cell layer (GCL) and inner nuclear layer (INL). The OHT-induced release of cytokines and RGC death were significantly decreased in the retinas of Casp1−/−Casp4(11)del, Panx1−/− and in Wild-type (WT) mice treated with the Panx1 inhibitor probenecid. Our results showed a complex spatio-temporal pattern of innate immune responses in the retina. Furthermore, they indicate an active contribution of neuronal NLRP1/NLRP3 inflammasomes and the pro-pyroptotic gasdermin D pathway to pathophysiology of the OHT injury. These results support the feasibility of inflammasome modulation for neuroprotection in OHT-injured retinas

    Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study

    Get PDF
    Sepsis is the leading cause of death in Intensive Care Units. Novel sepsis biomarkers and targets for treatment are needed to improve mortality from sepsis. MicroRNAs (miRNAs) have recently been used as finger prints for sepsis, and our goal in this prospective study was to investigate if serum miRNAs identified in genome-wide scans could predict sepsis mortality.We enrolled 214 sepsis patients (117 survivors and 97 non-survivors based on 28-day mortality). Solexa sequencing followed by quantitative reverse transcriptase polymerase chain reaction assays was used to test for differences in the levels of miRNAs between survivors and non-survivors. miR-223, miR-15a, miR-16, miR-122, miR-193*, and miR-483-5p were significantly differentially expressed. Receiver operating characteristic curves were generated and the areas under the curve (AUC) for these six miRNAs for predicting sepsis mortality ranged from 0.610 (95%CI: 0.523-0.697) to 0.790 (95%CI: 0.719-0.861). Logistic regression analysis showed that sepsis stage, Sequential Organ Failure Assessment scores, Acute Physiology and Chronic Health Evaluation II scores, miR-15a, miR-16, miR-193b*, and miR-483-5p were associated with death from sepsis. An analysis was done using these seven variables combined. The AUC for these combined variables' predictive probability was 0.953 (95% CI: 0.923-0.983), which was much higher than the AUCs for Acute Physiology and Chronic Health Evaluation II scores (0.782; 95% CI: 0.712-0.851), Sequential Organ Failure Assessment scores (0.752; 95% CI: 0.672-0.832), and procalcitonin levels (0.689; 95% CI: 0.611-0.784). With a cut-off point of 0.550, the predictive value of the seven variables had a sensitivity of 88.5% and a specificity of 90.4%. Additionally, miR-193b* had the highest odds ratio for sepsis mortality of 9.23 (95% CI: 1.20-71.16).Six serum miRNA's were identified as prognostic predictors for sepsis patients.ClinicalTrials.gov NCT01207531

    Arsenic Trioxide Exerts Antimyeloma Effects by Inhibiting Activity in the Cytoplasmic Substrates of Histone Deacetylase 6

    Get PDF
    Arsenic trioxide (As2O3) has shown remarkable efficacy for the treatment of multiple myeloma (MM). Histone deacetylases (HDAC) play an important role in the control of gene expression, and their dysregulation has been linked to myeloma. Especially, HDAC6, a unique cytoplasmic member of class II, which mainly functions as α-tubulin deacetylase and Hsp90 deacetylase, has become a target for drug development to treat cancer due to its major contribution in oncogenic cell transformation. However, the mechanisms of action for As2O3 have not yet been defined. In this study, we investigated the effect of As2O3 on proliferation and apoptosis in human myeloma cell line and primary myeloma cells, and then we studied that As2O3 exerts antimyeloma effects by inhibiting activity in the α-tubulin and Hsp90 through western blot analysis and immunoprecipitation. We found that As2O3 acts directly on MM cells at relatively low concentrations of 0.5∼2.5 µM, which effects survival and apoptosis of MM cells. However, As2O3 inhibited HDAC activity at the relatively high concentration and dose-dependent manner (great than 4 µM). Subsequently, we found that As2O3 treatment in a dose- and time-dependent fashion markedly increased the level of acetylated α-tubulin and acetylated Hsp90, and inhibited the chaperone association with IKKα activities and increased degradation of IKKα. Importantly, the loss of IKKα-associated Hsp90 occurred prior to any detectable loss in the levels of IKKα, indicating a novel pathway by which As2O3 down-regulates HDAC6 to destabilize IKKα protein via Hsp90 chaperone function. Furthermore, we observed the effect of As2O3 on TNF-α-induced NF-κB signaling pathway was to significantly reduced phosphorylation of Ser-536 on NF-κB p65. Therefore, our studies provide an important insight into the molecular mechanism of anti-myeloma activity of As2O3 in HDAC6-Hsp90-IKKα-NFκB signaling axis and the rationale for As2O3 can be extended readily using all the HDAC associated diseases

    Transcranial Low-Level Laser Therapy Improves Neurological Performance in Traumatic Brain Injury in Mice: Effect of Treatment Repetition Regimen

    Get PDF
    Low-level laser (light) therapy (LLLT) has been clinically applied around the world for a spectrum of disorders requiring healing, regeneration and prevention of tissue death. One area that is attracting growing interest in this scope is the use of transcranial LLLT to treat stroke and traumatic brain injury (TBI). We developed a mouse model of severe TBI induced by controlled cortical impact and explored the effect of different treatment schedules. Adult male BALB/c mice were divided into 3 broad groups (a) sham-TBI sham-treatment, (b) real-TBI sham-treatment, and (c) real-TBI active-treatment. Mice received active-treatment (transcranial LLLT by continuous wave 810 nm laser, 25 mW/cm[superscript 2], 18 J/cm[superscript 2], spot diameter 1 cm) while sham-treatment was immobilization only, delivered either as a single treatment at 4 hours post TBI, as 3 daily treatments commencing at 4 hours post TBI or as 14 daily treatments. Mice were sacrificed at 0, 4, 7, 14 and 28 days post-TBI for histology or histomorphometry, and injected with bromodeoxyuridine (BrdU) at days 21–27 to allow identification of proliferating cells. Mice with severe TBI treated with 1-laser Tx (and to a greater extent 3-laser Tx) had significant improvements in neurological severity score (NSS), and wire-grip and motion test (WGMT). However 14-laser Tx provided no benefit over TBI-sham control. Mice receiving 1- and 3-laser Tx had smaller lesion size at 28-days (although the size increased over 4 weeks in all TBI-groups) and less Fluoro-Jade staining for degenerating neurons (at 14 days) than in TBI control and 14-laser Tx groups. There were more BrdU-positive cells in the lesion in 1- and 3-laser groups suggesting LLLT may increase neurogenesis. Transcranial NIR laser may provide benefit in cases of acute TBI provided the optimum treatment regimen is employed.National Institutes of Health (U.S.) (Grant R01AI050875)Center for Integration of Medicine and Innovative Technology (DAMD17-02-2-0006)United States. Dept. of Defense. Congressionally Directed Medical Research Programs (W81XWH-09-1-0514)United States. Air Force Office of Scientific Research. Military Photomedicine Program (FA9550-11-1-0331

    Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (<it>CO1</it>) to diagnose and delimit species. However, there is no compelling <it>a priori </it>reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal <it>CO1 </it>barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation.</p> <p>Results</p> <p>Based on 1,179 mitochondrial genomes of eutherians, we found that the universal <it>CO1 </it>barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels.</p> <p>Conclusions</p> <p>We suggest that the <it>CO1 </it>barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.</p
    corecore