61 research outputs found

    Galaxy shape statistics in the effective field theory

    Get PDF
    Intrinsic galaxy alignments yield an important contribution to the observed statistics of galaxy shapes. The general bias expansion for galaxy sizes and shapes in three dimensions has been recently described by Vlah, Chisari \& Schmidt using the general perturbative effective field theory (EFT) framework, in analogy to the clustering of galaxies. In this work, we present a formalism that uses the properties of spherical tensors to project galaxy shapes onto the observed sky in the flat-sky approximation and compute the two-point functions at next-to-leading order as well as the leading-order three-point functions of galaxy shapes and number counts. The resulting expressions are given in forms that are convenient for efficient numerical implementation. For a source redshift distribution typical of Stage IV surveys, we find that that nonlinear intrinsic alignment contributions to galaxy shape correlations become relevant at angular wavenumbers l100l \gtrsim 100

    Distribution function approach to redshift space distortions. Part II: N-body simulations

    Full text link
    Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. We use Nbody simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of mu, cosine of the angle between the Fourier mode and line of sight, there are a finite number of terms contributing at each order. We present these terms and investigate their contribution to the total as a function of wavevector k. For mu^2 the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k~0.015h/Mpc, 10% at k~0.05h/Mpc at z=0, while for k>0.15h/Mpc they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contribute negatively to the power, while the contribution from vorticity part of momentum density auto-correlation is an order of magnitude lower. For mu^4 term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k>0.15h/Mpc. For mu^6 and mu^8 we find it has very little power for k<0.15h/Mpc. We also compare the expansion to the full 2D P^ss(k,mu) as well as to their multipoles. For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kmu<0.15h/Mpc at 6th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into FoG kernels, which extend the convergence up to a factor of 2 in scale. We find that the FoG kernels are approximately Lorentzian.Comment: 21 pages, 9 figures, published in JCA

    The matter power spectrum in redshift space using effective field theory

    Get PDF
    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k <= 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time for the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of the baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k <~ 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the ell=0 mode up to ~ 5% and for the ell = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the ell = 0 mode gives a firm upper limit of k ~ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the ell = 0 mode, but can induce deviations as large as 2% for the ell = 2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms

    An EFT description of galaxy intrinsic alignments

    No full text
    We present a general perturbative effective field theory (EFT) description of galaxy shape correlations, which are commonly known as intrinsic alignments. This rigorous approach extends current analytical modelling strategies in that it only relies on the equivalence principle. We present our results in terms of three-dimensional statistics for two- and three-point functions of both galaxy shapes and number counts. In case of the two-point function, we recover the well-known linear alignment result at leading order, but also present the full next-to-leading order expressions. In case of the three-point function we present leading order results for all the auto- and cross-correlations of galaxy shapes and densities. We use a spherical tensor basis to decompose the tensor perturbations in different helicity modes, which allows us to make use of isotropy and parity properties in the correlators. Combined with the results on projection presented in a forthcoming companion paper, our framework is directly applicable to accounting for intrinsic alignment contamination in weak lensing surveys, and to extracting cosmological information from intrinsic alignments
    corecore