3,735 research outputs found

    Identifying Operational Benefits of the Arrival Management System – A KPI-Based Experimental Method by Evaluating Radar Trajectories

    Get PDF
    The arrival management (AMAN) system is a decision support tool for air traffic controllers to establish and maintain the landing sequence for arrival aircraft. The original intention of designing the AMAN system is to improve the efficiency of air traffic management (ATM), but few studies are investigating the operational benefits of this system based on key performance indicators (KPIs) and evaluating actual data in a real-time environment. The main purpose of this paper is to propose a KPI based transferable comparative analysis method for identifying the operational benefits of the AMAN through radar trajectories. Firstly, six KPIs are established from a joint study of the mainstream ATM performance frameworks worldwide. Secondly, appropriate evaluation technique approaches are determined according to the characteristics of each KPI. Finally, a Chinese metropolitan airport is taken for the case study, and three periods are defined to form data samples with high similarity for comparative experiments. The results validate the feasibility of the proposed method and find comprehensive performance improvements in arrival operations under the effects of the AMAN system

    Intricacies of the Co3+^{3+} spin state in Sr2_2Co0.5_{0.5}Ir0.5_{0.5}O4_4: an x-ray absorption and magnetic circular dichroism study

    Full text link
    We report on a combined soft x-ray absorption and magnetic circular dichroism (XMCD) study at the Co-L3,2L_{3,2} on the hybrid 3dd/5dd solid state oxide Sr2_2Co0.5_{0.5}Ir0.5_{0.5}O4_4 with the K2_2NiF4_4 structure. Our data indicate unambiguously a pure high spin state (S=2)(S=2) for the Co3+^{3+} (3d6d^6) ions with a significant unquenched orbital moment Lz/2Sz=0.25L_z/2S_z=0.25 despite the sizeable elongation of the CoO6_6 octahedra. Using quantitative model calculations based on parameters consistent with our spectra, we have investigated the stability of this high spin state with respect to the competing low spin and intermediate spin states.Comment: 7 pages, 4 figure

    Remarks on the Scalar Graviton Decoupling and Consistency of Horava Gravity

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. But there have been confusions regarding the extra scalar graviton mode and the consistency of the Horava model. I reconsider these problems and show that, in the Minkowski vacuum background, the scalar graviton mode can be consistency decoupled from the usual tensor graviton modes by imposing the (local) Hamiltonian as well as the momentum constraints.Comment: Some clarifications regarding the projectable case added, Typos corrected, Comments (Footnote No.9, Note Added) added, References updated, Accepted in CQ

    Nonuniform symmetry breaking in noncommutative λΊ4\lambda \Phi^4 theory

    Full text link
    The spontaneous symmetry breaking in noncommutative λΊ4\lambda\Phi^4 theory has been analyzed by using the formalism of the effective action for composite operators in the Hartree-Fock approximation. It turns out that there is no phase transition to a constant vacuum expectation of the field and the broken phase corresponds to a nonuniform background. By considering =Acos⁥(Q⃗⋅x⃗)=A \cos(\vec Q \cdot \vec x) the generated mass gap depends on the angles among the momenta k⃗\vec k and Q⃗\vec Q and the noncommutativity parameter ξ⃗\vec\theta. The order of the transition is not easily determinable in our approximation.Comment: 18 pages, 4 figures, added reference

    A Statistical Approach to Multifield Inflation: Many-field Perturbations Beyond Slow Roll

    Full text link
    We study multifield contributions to the scalar power spectrum in an ensemble of six-field inflationary models obtained in string theory. We identify examples in which inflation occurs by chance, near an approximate inflection point, and we compute the primordial perturbations numerically, both exactly and using an array of truncated models. The scalar mass spectrum and the number of fluctuating fields are accurately described by a simple random matrix model. During the approach to the inflection point, bending trajectories and violations of slow roll are commonplace, and 'many-field' effects, in which three or more fields influence the perturbations, are often important. However, in a large fraction of models consistent with constraints on the tilt the signatures of multifield evolution occur on unobservably large scales. Our scenario is a concrete microphysical realization of quasi-single-field inflation, with scalar masses of order HH, but the cubic and quartic couplings are typically too small to produce detectable non-Gaussianity. We argue that our results are characteristic of a broader class of models arising from multifield potentials that are natural in the Wilsonian sense.Comment: 39 pages, 17 figures. References added. Matches version published in JCA
    • 

    corecore