5,793 research outputs found

    In situ imaging of field emission from individual carbon nanotubes and their structural damage

    Get PDF
    ©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ transmission electron microscopy. A fluctuation in emission current was due to a variation in distance between the nanotube tip and the counter electrode owing to a "head-shaking" effect of the nanotube during field emission. Strong field-induced structural damage of a nanotube occurs in two ways: a piece-by-piece and segment-by-segment pilling process of the graphitic layers, and a concentrical layer-by-layer stripping process. The former is believed owing to a strong electrostatic force, and the latter is likely due to heating produced by emission current that flowed through the most outer graphitic layers

    Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice

    Get PDF
    Since the well-known PT symmetry has its fundamental significance and implication in physics, where PT denotes the combined operation of space-inversion P and time-reversal T, it is extremely important and intriguing to completely classify exotic PT-invariant topological metals and to physically realize them. Here we, for the first time, establish a rigorous classification of topological metals that are protected by the PT symmetry using KO-theory. As a physically realistic example, a PT-invariant nodal loop (NL) model in a 3D Brillouin zone is constructed, whose topological stability is revealed through its PT-symmetry-protected nontrivial Z2 topological charge. Based on these exact results, we propose an experimental scheme to realize and to detect tunable PT-invariant topological NL states with ultracold atoms in an optical lattice, in which atoms with two hyperfine spin states are loaded in a spin-dependent 3D OL and two pairs of Raman lasers are used to create out-of-plane spin-flip hopping with site-dependent phase. Such a realistic cold-atom setup can yield topological NL states, having a tunable ring-shaped band-touching line with the two-fold degeneracy in the bulk spectrum and non-trivial surface states. The states are actually protected by the combined PT symmetry even in the absence of both P and T symmetries, and are characterized by a Z2-type invariant (a quantized Berry phase). Remarkably, we demonstrate with numerical simulations that (i) the characteristic NL can be detected by measuring the atomic transfer fractions in a Bloch-Zener oscillation; (ii) the topological invariant may be measured based on the time-of-flight imaging; and (iii) the surface states may be probed through Bragg spectroscopy. The present proposal for realizing topological NL states in cold atom systems may provide a unique experimental platform for exploring exotic PT-invariant topological physics.Comment: 11 pages, 6 figures; accepted for publication in Phys. Rev.

    Hidden itinerant-spin phase in heavily-overdoped La2-xSrxCuO4 revealed by dilute Fe doping: A combined neutron scattering and angle-resolved photoemission study

    Full text link
    We demonstrated experimentally a direct way to probe a hidden propensity to the formation of spin density wave (SDW) in a non-magnetic metal with strong Fermi surface nesting. Substituting Fe for a tiny amount of Cu (1%) induced an incommensurate magnetic order below 20 K in heavily-overdoped La2-xSrxCuO4 (LSCO). Elastic neutron scattering suggested that this order cannot be ascribed to the localized spins on Cu or doped Fe. Angle-resolved photoemission spectroscopy (ARPES), combined with numerical calculations, revealed a strong Fermi surface nesting inherent in the pristine LSCO that likely drives this order. The heavily-overdoped Fe-doped LSCO thus represents the first plausible example of the long-sought "itinerant-spin extreme" of cuprates, where the spins of itinerant doped holes define the magnetic ordering ground state. This finding complements the current picture of cuprate spin physics that highlights the predominant role of localized spins at lower dopings. The demonstrated set of methods could potentially apply to studying hidden density-wave instabilities of other "nested" materials on the verge of density wave ordering.Comment: Abstract and discussion revised; to appear in Phys. Rev. Let

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Full text link
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M⊙_\odot) clusters within ∼100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120′′×120′′120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M≳4.7M\gtrsim4.7 M⊙_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.62−0.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    Making topologically trivial non-Hermitian systems non-trivial via gauge fields

    Full text link
    Non-Hermiticity significantly enriches the concepts of symmetry and topology in physics. Particularly, non-Hermiticity gives rise to the ramified symmetries, where the non-Hermitian Hamiltonian HH is transformed to H†H^\dagger. For time-reversal (TT) and sublattice symmetries, there are six ramified symmetry classes leading to novel topological classifications with various non-Hermitian skin effects. As artificial crystals are the main experimental platforms for non-Hermitian physics, there exists the symmetry barrier for realizing topological physics in the six ramified symmetry classes: While artificial crystals are in spinless classes with T2=1T^2=1, nontrivial classifications dominantly appear in spinful classes with T2=−1T^2=-1. Here, we present a general mechanism to cross the symmetry barrier. With an internal parity symmetry PP, the square of the combination T~=PT\tilde{T}=PT can be modified by appropriate gauge fluxes. Using the general mechanism, we systematically construct spinless models for all non-Hermitian spinful topological phases in one and two dimensions, which are experimentally realizable. Our work suggests that gauge structures may significantly enrich non-Hermitian physics at the fundamental level.Comment: 6+10 pages, 3+6 pages. Accepted for publication in Physical Review Letter
    • …
    corecore