341 research outputs found

    Editorial for FGCS Special issue on “Time-critical Applications on Software-defined Infrastructures”

    Get PDF
    Performance requirements in many applications can often be modelled as constraints related to time, for example, the span of data processing for disaster early warning [1], latency in live event broadcasting [2], and jitter during audio/video conferences [3]. These time constraints are often treated either in an “as fast as possible” manner, such as sensitive latencies in high-performance computing or communication tasks, or in a “timeliness” way where tasks have to be finished within a given window in real-time systems, as classified in [4]. To meet the required time constraints, one has to carefully analyse time constraints, engineer and integrate system components, and optimise the scheduling for computing and communication tasks. The development of a time-critical application is thus time-consuming and costly. During the past decades, the infrastructure technologies of computing, storage and networking have made tremendous progress. Besides the capacity and performance of physical devices, the virtualisation technologies offer effective resource management and isolation at different levels, such as Java Virtual Machines at the application level, Dockers at the operating system level, and Virtual Machines at the whole system level. Moreover, the network embedding [5] and software-defined networking [6] provide network-level virtualisation and control that enable a new paradigm of infrastructure, where infrastructure resources can be virtualised, isolated, and dynamically customised based on application needs. The software-defined infrastructures, including Cloud, Fog, Edge, software-defined networking and network function virtualisation, emerge nowadays as new environments for distributed applications with time-critical application requirements, but also face challenges in effectively utilising the advanced infrastructure features in system engineering and dynamic control. This special issue on “time-critical applications and software-defined infrastructures” focuses on practical aspects of the design, development, customisation and performance-oriented operation of such applications for Clouds and other distributed environments

    Gutzwiller density functional theory for correlated electron systems

    Full text link
    We develop a new density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wavefunction which obeys exactly the Gutzwiller approximation for all one particle operators. The solution of the many electron problem is mapped onto the self-consistent solution of a set of single particle Schroedinger equations analogous to standard DFT-LDA calculations.Comment: 4 page

    ARTICONF decentralized social media platform for democratic crowd journalism

    Get PDF
    Media production and consumption behaviors are changing in response to new technologies and demands, giving birth to a new generation of social applications. Among them, crowd journalism represents a novel way of constructing democratic and trustworthy news relying on ordinary citizens arriving at breaking news locations and capturing relevant videos using their smartphones. The ARTICONF project as reported by Prodan (Euro-Par 2019: parallel processing workshops, Springer, 2019) proposes a trustworthy, resilient, and globally sustainable toolset for developing decentralized applications (DApps) to address this need. Its goal is to overcome the privacy, trust, and autonomy-related concerns associated with proprietary social media platforms overflowed by fake news. Leveraging the ARTICONF tools, we introduce a new DApp for crowd journalism called MOGPlay. MOGPlay collects and manages audiovisual content generated by citizens and provides a secure blockchain platform that rewards all stakeholders involved in professional news production. Besides live streaming, MOGPlay offers a marketplace for audiovisual content trading among citizens and free journalists with an internal token ecosystem. We discuss the functionality and implementation of the MOGPlay DApp and illustrate four pilot crowd journalism live scenarios that validate the prototype

    Disorder-Induced Multiple Transition involving Z2 Topological Insulator

    Full text link
    Effects of disorder on two-dimensional Z2 topological insulator are studied numerically by the transfer matrix method. Based on the scaling analysis, the phase diagram is derived for a model of HgTe quantum well as a function of disorder strength and magnitude of the energy gap. In the presence of sz non-conserving spin-orbit coupling, a finite metallic region is found that partitions the two topologically distinct insulating phases. As disorder increases, a narrow-gap topologically trivial insulator undergoes a series of transitions; first to metal, second to topological insulator, third to metal, and finally back to trivial insulator. We show that this multiple transition is a consequence of two disorder effects; renormalization of the band gap, and Anderson localization. The metallic region found in the scaling analysis corresponds roughly to the region of finite density of states at the Fermi level evaluated in the self-consistent Born approximation.Comment: 5 pages, 5 figure
    corecore