39 research outputs found

    Shortest paths and load scaling in scale-free trees

    Get PDF
    The average node-to-node distance of scale-free graphs depends logarithmically on N, the number of nodes, while the probability distribution function (pdf) of the distances may take various forms. Here we analyze these by considering mean-field arguments and by mapping the m=1 case of the Barabasi-Albert model into a tree with a depth-dependent branching ratio. This shows the origins of the average distance scaling and allows a demonstration of why the distribution approaches a Gaussian in the limit of N large. The load (betweenness), the number of shortest distance paths passing through any node, is discussed in the tree presentation.Comment: 8 pages, 8 figures; v2: load calculations extende

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic

    Tag-Aware Recommender Systems: A State-of-the-art Survey

    Get PDF
    In the past decade, Social Tagging Systems have attracted increasing attention from both physical and computer science communities. Besides the underlying structure and dynamics of tagging systems, many efforts have been addressed to unify tagging information to reveal user behaviors and preferences, extract the latent semantic relations among items, make recommendations, and so on. Specifically, this article summarizes recent progress about tag-aware recommender systems, emphasizing on the contributions from three mainstream perspectives and approaches: network-based methods, tensor-based methods, and the topic-based methods. Finally, we outline some other tag-related works and future challenges of tag-aware recommendation algorithms.Comment: 19 pages, 3 figure

    Quadrupole deformations of neutron-drip-line nuclei studied within the Skyrme Hartree-Fock-Bogolyubov approach

    Get PDF
    We introduce a local-scaling point transformation to allow for modifying the asymptotic properties of the deformed three-dimensional Cartesian harmonic oscillator wave functions. The resulting single-particle bases are very well suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line nuclei. We then present results of self-consistent calculations performed for the Mg isotopes and for light nuclei located near the two-neutron drip line. The results suggest that for all even-even elements with ZZ=10--18 the most weakly-bound nucleus has an oblate ground-state shape.Comment: 20 pages, 7 figure

    The density-matrix renormalization group

    Full text link
    The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly acquired the status of method of choice for numerical studies of one-dimensional quantum systems. Its applications to the calculation of static, dynamic and thermodynamic quantities in such systems are reviewed. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and non-equilibrium statistical physics, and time-dependent phenomena is discussed. This review also considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the January 2005 issu

    Continuum effects for the mean-field and pairing properties of weakly bound nuclei

    Get PDF
    Continuum effects in the weakly bound nuclei close to the drip-line are investigated using the analytically soluble Poschl-Teller-Ginocchio potential. Pairing correlations are studied within the Hartree-Fock-Bogoliubov method. We show that both resonant and non-resonant continuum phase space is active in creating the pairing field. The influence of positive-energy phase space is quantified in terms of localizations of states within the nuclear volume.Comment: 27 RevTeX pages, 12 EPS figures included, submitted to Physical Review
    corecore