21 research outputs found

    Transcription of satellite DNAs in insects

    Get PDF
    Chromatin condensation is an important regulatory mechanism of gene silencing as well as gene activation for the hundreds of functional protein genes harbored in heterochromatic regions of different insect species. Being the major heterochromatin constituents, satellite DNAs serve important roles in heterochromatin regulation in insect in general. Their expression occurs in all developmental stages, being the highest during embryogenesis. Satellite DNA transcrips range from small RNAs, corresponding in size to siRNA, and piwiRNAs, to large, a few Kb long RNAs. The long transcripts are preferentially nonpolyadenylated and remain in the nucleus. The actively regulated expression of satDNAs by cis or trans elements as well as by environmental stress, rather than constitutive transcription, speaks in favour of their involvement in differentiation, development, and environmental response

    Analysis of copy number variation in the Abp gene regions of two house mouse subspecies suggests divergence during the gene family expansions

    Get PDF
    The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice

    Functional KV10.1 Channels Localize to the Inner Nuclear Membrane

    Get PDF
    Ectopically expressed human KV10.1 channels are relevant players in tumor biology. However, their function as ion channels at the plasma membrane does not totally explain their crucial role in tumors. Both in native and heterologous systems, it has been observed that a majority of KV10.1 channels remain at intracellular locations. In this study we investigated the localization and possible roles of perinuclear KV10.1. We show that KV10.1 is expressed at the inner nuclear membrane in both human and rat models; it co-purifies with established inner nuclear membrane markers, shows resistance to detergent extraction and restricted mobility, all of them typical features of proteins at the inner nuclear membrane. KV10.1 channels at the inner nuclear membrane are not all transported directly from the ER but rather have been exposed to the extracellular milieu. Patch clamp experiments on nuclei devoid of external nuclear membrane reveal the existence of channel activity compatible with KV10.1. We hypothesize that KV10.1 channels at the nuclear envelope might participate in the homeostasis of nuclear K+, or indirectly interact with heterochromatin, both factors known to affect gene expression

    Satellite DNA-Mediated Effects on Genome Regulation

    No full text
    In this chapter we give a comprehensive view on the role of satellite DNAs and their transcripts in heterochromatin formation and regulation as well as in modulation of gene expression
    corecore