926 research outputs found
Axial light emission and Ar metastable densities in a parallel plate dc micro discharge in steady state and transient regimes
Axial emission profiles in a parallel plate dc micro discharge (feedgas:
argon; discharge gap d=1mm; pressure p=10Torr) were studied by means of time
resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A)
characteristics were recorded and Ar* metastable densities were measured by
tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in
the steady state regime are similar to corresponding profiles in standard size
discharges (d=1cm, p=1Torr). For some discharge conditions relaxation
oscillations are present when the micro discharge switches periodically between
low current Townsend-like mode and normal glow. At the same time the axial
emission profile shows transient behavior, starting with peak distribution at
the anode, which gradually moves towards the cathode during the normal glow.
The development of argon metastable densities highly correlates with the
oscillating discharge current. Gas temperatures in the low current
Townsend-like mode (T= 320-400K) and the high current glow mode (T=469-526K)
were determined by the broadening of the recorded spectral profiles as a
function of the discharge current.Comment: submitted to Plasma Sources Sci. Techno
Donut and dynamic polarization effects in proton channeling through carbon nanotubes
We investigate the angular and spatial distributions of protons of the energy
of 0.223 MeV after channeling through an (11,~9) single-wall carbon nanotube of
the length of 0.2 m. The proton incident angle is varied between 0 and 10
mrad, being close to the critical angle for channeling. We show that, as the
proton incident angle increases and approaches the critical angle for
channeling, a ring-like structure is developed in the angular distribution -
donut effect. We demonstrate that it is the rainbow effect. When the proton
incident angle is between zero and a half of the critical angle for channeling,
the image force affects considerably the number and positions of the maxima of
the angular and spatial distributions. However, when the proton incident angle
is close to the critical angle for channeling, its influence on the angular and
spatial distributions is reduced strongly. We demonstrate that the increase of
the proton incident angle can lead to a significant rearrangement of the
propagating protons within the nanotube. This effect may be used to locate
atomic impurities in nanotubes as well as for creating nanosized proton beams
to be used in materials science, biology and medicine.Comment: 17 pages, 14 figure
Magnetic field enhanced structural instability in EuTiO_{3}
EuTiO_{3} undergoes a structural phase transition from cubic to tetragonal at
T_S = 282 K which is not accompanied by any long range magnetic order. However,
it is related to the oxygen ocathedra rotation driven by a zone boundary
acoustic mode softening. Here we show that this displacive second order
structural phase transition can be shifted to higher temperatures by the
application of an external magnetic field (increased by 4 K for mu_{0}H = 9 T).
This observed field dependence is in agreement with theoretical predictions
based on a coupled spin-anharmonic-phonon interaction model.Comment: 4 pages, 4 figure
A Monte Carlo simulation of ion transport at finite temperatures
We have developed a Monte Carlo simulation for ion transport in hot
background gases, which is an alternative way of solving the corresponding
Boltzmann equation that determines the distribution function of ions. We
consider the limit of low ion densities when the distribution function of the
background gas remains unchanged due to collision with ions. A special
attention has been paid to properly treat the thermal motion of the host gas
particles and their influence on ions, which is very important at low electric
fields, when the mean ion energy is comparable to the thermal energy of the
host gas. We found the conditional probability distribution of gas velocities
that correspond to an ion of specific velocity which collides with a gas
particle. Also, we have derived exact analytical formulas for piecewise
calculation of the collision frequency integrals. We address the cases when the
background gas is monocomponent and when it is a mixture of different gases.
The developed techniques described here are required for Monte Carlo
simulations of ion transport and for hybrid models of non-equilibrium plasmas.
The range of energies where it is necessary to apply the technique has been
defined. The results we obtained are in excellent agreement with the existing
ones obtained by complementary methods. Having verified our algorithm, we were
able to produce calculations for Ar ions in Ar and propose them as a new
benchmark for thermal effects. The developed method is widely applicable for
solving the Boltzmann equation that appears in many different contexts in
physics.Comment: 14 page
Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search
Retrieval pipelines commonly rely on a term-based search to obtain candidate
records, which are subsequently re-ranked. Some candidates are missed by this
approach, e.g., due to a vocabulary mismatch. We address this issue by
replacing the term-based search with a generic k-NN retrieval algorithm, where
a similarity function can take into account subtle term associations. While an
exact brute-force k-NN search using this similarity function is slow, we
demonstrate that an approximate algorithm can be nearly two orders of magnitude
faster at the expense of only a small loss in accuracy. A retrieval pipeline
using an approximate k-NN search can be more effective and efficient than the
term-based pipeline. This opens up new possibilities for designing effective
retrieval pipelines. Our software (including data-generating code) and
derivative data based on the Stack Overflow collection is available online
Positron transport: the plasma-gas interface
Motivated by an increasing number of applications, new techniques in the analysis of electron transport have been developed over the past 30 years or so, but similar methods had yet to be applied to positrons. Recently, an in-depth look at positrontransport in pure argon gas has been performed using a recently established comprehensive set of cross sections and well-established Monte Carlo simulations. The key novelty as compared to electron transport is the effect of positronium formation which changes the number of particles and has a strong energy dependence. This coupled with spatial separation by energy of the positron swarm leads to counterintuitive behavior of some of the transport coefficients. Finally new results in how the presence of an applied magnetic field affects the transport coefficients are presented.This work was performed under MNTRS Project No.
141025
- …
