1,887 research outputs found

    pQCD vs. AdS/CFT Tested by Heavy Quark Energy Loss

    Full text link
    We predict the charm and bottom quark nuclear modification factors using weakly coupled pQCD and strongly coupled AdS/CFT drag methods. The log(pT/M_Q)/pT dependence of pQCD loss and the momentum independence of drag loss lead to different momentum dependencies for the R_{AA} predictions. This difference is enhanced by examining a new experimental observable, the double ratio of charm to bottom nuclear modification factors, R^{cb}=R^c_{AA}/R^b_{AA}. At LHC the weakly coupled theory predicts R^{cb} goes to 1; whereas the strongly coupled theory predicts R^{cb} .2 independent of pT. At RHIC the differences are less dramatic, as the production spectra are harder, but the drag formula is applicable to higher momenta, due to the lower temperature.Comment: 6 pages, 4 figures. Proceedings for the International Conference on Strangeness in Quark Matter (SQM 2007), Levoca, Slovakia, 24-29 June 200

    Sensitivity of deexcitation energies of superdeformed secondary minima to the density dependence of symmetry energy with the relativistic mean-field theory

    Full text link
    The relationship between deexcitation energies of superdeformed secondary minima relative to ground states and the density dependence of the symmetry energy is investigated for heavy nuclei using the relativistic mean field (RMF) model. It is shown that the deexcitation energies of superdeformed secondary minima are sensitive to differences in the symmetry energy that are mimicked by the isoscalar-isovector coupling included in the model. With deliberate investigations on a few Hg isotopes that have data of deexcitation energies, we find that the description for the deexcitation energies can be improved due to the softening of the symmetry energy. Further, we have investigated deexcitation energies of odd-odd heavy nuclei that are nearly independent of pairing correlations, and have discussed the possible extraction of the constraint on the density dependence of the symmetry energy with the measurement of deexcitation energies of these nuclei.Comment: 14 pages, 3 figure

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields

    Full text link
    We derive the cross section of neutrino-nucleon scatterings in supernova magnetic fields, including weak-magnetism and recoil corrections. Since the weak interaction violates the parity, the scattering cross section asymmetrically depends on the directions of the neutrino momenta to the magnetic field; the origin of pulsar kicks may be explained by the mechanism. An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon scatterings is absent at the leading level of O(ÎĽBB/T)\mathcal O(\mu_BB/T), where ÎĽB\mu_B is the nucleon magneton, BB is the magnetic field strength, and TT is the matter temperature at a neutrinosphere. This is because at this level the drift flux of the neutrinos are exactly canceled by that of the antineutrinos. Hence, the relevant asymmetry in the neutrino emission is suppressed by much smaller coefficient of O(ÎĽBB/m)\mathcal O(\mu_BB/m), where mm is the nucleon mass; detailed form of the relevant drift flux is also derived from the scattering cross section, using a simple diffusion approximation. It appears that the asymmetric neutrino emission is too small to induce the observed pulsar kicks. However, we note the fact that the drift flux is proportional to the deviation of the neutrino distribution function from the value of thermal equilibrium at neutrinosphere. Since the deviation can be large for non-electron neutrinos, it is expected that there occurs cancellation between the deviation and the small suppression factor of O(ÎĽBB/m)\mathcal O(\mu_BB/m). Using a simple parameterization, we show that the drift flux due to neutrino-nucleon scatterings may be comparable to the leading term due to beta processes with nucleons, which has been estimated to give a relevant kick velocity when the magnetic field is sufficiently strong as 101510^{15}--101610^{16} G.Comment: 19 pages, 1 figure. Accepted by Physical Review

    Surprising Connections Between General Relativity and Condensed Matter

    Full text link
    This brief review is intended to introduce gravitational physicists to recent developments in which general relativity is being used to describe certain aspects of condensed matter systems, e.g., superconductivity.Comment: 14 pages; based on talk given at GR1

    The Heterotic Enhancon

    Get PDF
    The enhancon mechanism is studied in the heterotic string theory. We consider the N_L=0 winding strings with momentum (NS1-W*) and the Kaluza-Klein dyons (KK5-NS5*). The NS1-W* and KK5-NS5* systems are dualized to the D4-D0* and D6-D2* systems, respectively, under the d=6 heterotic/IIA S-duality. The heterotic form has a number of advantages over the type IIA form. We study these backgrounds and obtain the enhancon radii by brane probe analysis. The results are consistent with S-duality.Comment: 21 pages, 1 figure, LaTe

    Relativistic analysis of the 208Pb(e,e'p)207Tl reaction at high momentum

    Get PDF
    The recent 208Pb(e,e'p)207Tl data from NIKHEF-K at high missing momentum (p_m>300 MeV/c) are compared to theoretical results obtained with a fully relativistic formalism previously applied to analyze data on the low missing momentum (p_m < 300 MeV/c) region. The same relativistic optical potential and mean field wave functions are used in the two p_m-regions. The spectroscopic factors of the various shells are extracted from the analysis of the low-p_m data and then used in the high-p_m region. In contrast to previous analyses using a nonrelativistic mean field formalism, we do not find a substantial deviation from the mean field predictions other than that of the spectroscopic factors, which appear to be consistent with both low- and high-p_m data. We find that the difference between results of relativistic and nonrelativistic formalisms is enhanced in the p_m<0 region that will be interesting to explore experimentally.Comment: 12 pages, LaTeX+Revtex, included 3 postscript figures. To appear in the Physical Review C (Rapid Communications

    Wavy Strings: Black or Bright?

    Get PDF
    Recent developments in string theory have brought forth a considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,ml,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the `horizon' of a black string superposed with a vibration in any mode with l≥1l \ge 1. The same argument applied to longitudinal (l=0l=0) waves detects only finite tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons.Comment: 45 pages, latex, no figure

    Thermal switch of oscillation frequency in belousov- zhabotinsky liquid marbles

    Get PDF
    © 2019 The Authors. External control of oscillation dynamics in the Belousov- Zhabotinsky (BZ) reaction is important for many applications including encoding computing schemes. When considering the BZ reaction, there are limited studies dealing with thermal cycling, particularly cooling, for external control. Recently, liquid marbles (LMs) have been demonstrated as a means of confining the BZ reaction in a system containing a solid-liquid interface. BZ LMs were prepared by rolling 50 ml droplets in polyethylene (PE) powder. Oscillations of electrical potential differences within the marble were recorded by inserting a pair of electrodes through the LM powder coating into the BZ solution core. Electrical potential differences of up to 100mV were observed with an average period of oscillation ca 44 s. BZ LMs were subsequently frozen to 218C to observe changes in the frequency of electrical potential oscillations. The frequency of oscillations reduced upon freezing to 11mHz cf. 23 mHz at ambient temperature. The oscillation frequency of the frozen BZ LM returned to 23 mHz upon warming to ambient temperature. Several cycles of frequency fluctuations were able to be achieved
    • …
    corecore