219 research outputs found

    Electrokinetic Control of Viscous Fingering

    Get PDF
    We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "Vector Laplacian Growth", in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and electrokinetic remediation of contaminated soils.Comment: * Fixed a few typos * Added new discussion of possible liquid pairs * Added new reference

    Freezing point depression and freeze-thaw damage by nano-fuidic salt trapping

    Get PDF
    A remarkable variety of organisms and wet materials are able to endure temperatures far below the freezing point of bulk water. Cryo-tolerance in biology is usually attributed to "anti-freeze" proteins, and yet massive supercooling (<āˆ’40āˆ˜< -40^\circC) is also possible in porous media containing only simple aqueous electrolytes. For concrete pavements, the common wisdom is that freeze-thaw damage results from the expansion of water upon freezing, but this cannot explain the large pressures (>10> 10~MPa) required to damage concrete, the observed correlation between pavement damage and de-icing salts, or the damage of cement paste loaded with benzene (which contracts upon freezing). In this Letter, we propose a different mechanism -- nanofluidic salt trapping -- which can explain the observations, using simple mathematical models of dissolved ions confined to thin liquid films between growing ice and charged surfaces. Although trapped salt lowers the freezing point, ice nucleation in charged pores causes enormous disjoining pressures via the rejected ions, until their removal by precipitation or surface adsorption at a lower temperatures releases the pressure and allows complete freezing. The theory is able to predict the non-monotonic salt-concentration dependence of freeze-thaw damage in concreter and provides a general framework to understand the origins of cryo-tolerance.Comment: 5 figure

    Dielectric breakdown by electric-field induced phase separation

    Full text link
    The control of the dielectric and conductive properties of device-level systems is important for increasing the efficiency of energy- and information-related technologies. In some cases, such as neuromorphic computing, it is desirable to increase the conductivity of an initially insulating medium by several orders of magnitude, resulting in effective dielectric breakdown. Here, we show that by tuning the value of the applied electric field in systems { with variable permittivity and electric conductivity}, e.g. ion intercalation materials, we can vary the device-level electrical conductivity by orders of magnitude. We attribute this behavior to the formation of filament-like conductive domains that percolate throughout the system, { which form only when the electric conductivity depends on the concentration}. We conclude by discussing the applicability of our results in neuromorphic computing devices and Li-ion batteries.Comment: 12 pages, 5 figure

    Freezing point depression and freeze-thaw damage by nanofluidic salt trapping

    Get PDF
    A remarkable variety of organisms and wet materials are able to endure temperatures far below the freezing point of bulk water. Cryotolerance in biology is usually attributed to ā€œantifreezeā€ proteins, and yet massive supercooling (10 MPa) required to damage concrete, the observed correlation between pavement damage and deicing salts, or the FT damage of cement paste loaded with benzene (which contracts upon freezing). In this work, we propose a different mechanismā€”nanofluidic salt trappingā€”which can explain the observations, using simple mathematical models of dissolved ions confined between growing ice and charged pore surfaces. When the transport time scale for ions through charged pore space is prolonged, ice formation in confined pores causes enormous disjoining pressures via the ions rejected from the ice core, until their removal by precipitation or surface adsorption at lower temperatures releases the pressure and allows complete freezing. The theory is able to predict the nonmonotonic salt-concentration dependence of FT damage in concrete and provides some hint to better understand the origins of cryotolerance from a physical chemistry perspective

    Vortices of Electro-osmotic Flow in Heterogeneous Porous Media

    Full text link
    Traditional models of electrokinetic transport in porous media are based on homogenized material properties, which neglect any macroscopic effects of microscopic fluctuations. This perspective is taken not only for convenience, but also motivated by the expectation of irrotational electro-osmotic flow, proportional to the electric field, for uniformly charged surfaces (or constant zeta potential) in the limit of thin double layers. Here, we show that the inherent heterogeneity of porous media generally leads to macroscopic vortex patterns, which have important implications for convective transport and mixing. These vortical flows originate due to competition between pressure-driven and electro-osmotic flows, and their size are characterized by the correlation length of heterogeneity in permeability or surface charge. The appearance of vortices is controlled by a single dimensionless control parameter, defined as the ratio of a typical electro-osmotic velocity to the total mean velocity

    Capillary stress and structural relaxation in moist granular materials

    Get PDF
    We propose a theoretical framework to calculate capillary stresses in complex mesoporous materials, such as moist sand, nanoporous hydrates, and drying colloidal films. Molecular simulations are mapped onto a phase-field model of the liquid-vapor mixture, whose inhomogeneous stress tensor is integrated over Voronoi polyhedra in order to calculate equal and opposite forces between each pair of neighboring grains. The method is illustrated by simulations of moisture-induced forces in small clusters and random packings of spherical grains using lattice-gas Density Functional Theory. For a nano-granular model of cement hydrates, this approach reproduces the hysteretic water sorption/desorption isotherms and predicts drying shrinkage strain isotherm in good agreement with experiments. We show that capillary stress is an effective mechanism for internal stress relaxation in colloidal random packings, which contributes to the extraordinary durability of cement paste.Comment: 4 figure
    • ā€¦
    corecore