1,435 research outputs found

    The Application of Experimental Design Methodology for the Investigation of Liquid Radioactive Waste Treatment

    Get PDF
    The sorption properties of waste facade, brick, and asphalt sample towards Sr(II), Co(II), and Ni(II) ions from single and multicomponent solutions were investigated. The highest sorption capacity was found for Ni(II) ions, while the most effective sorbent was facade. Simplex Centroid Mixture Design was used in order to investigate the sorption processes of ions from solutions with different composition as well as the competition between the cations. Based on the statistical analysis results, the equations for data modeling were proposed. According to the observations, the investigated solid matrices can be effectively used for the liquid radioactive waste treatment. Furthermore, the applied methodology turned out to be an easy and operational way for the investigations of multicomponent sorption processes

    Luminescence Properties of a Fibonacci Photonic Quasicrystal

    Full text link
    We report the realization of an active one-dimensional Fibonacci photonic quasi-crystal via spin coating. Manipulation of the luminescence properties of an organic dye embedded in the quasi-crystal is presented and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in excellent agreement with the theoretical calculations.Comment: PDF file, 14 pages 4 figure

    Loss of gastrokine-2 drives premalignant gastric inflammation and tumor progression

    Get PDF
    Chronic mucosal inflammation is associated with a greater risk of gastric cancer (GC) and, therefore, requires tight control by suppressive counter mechanisms. Gastrokine-2 (GKN2) belongs to a family of secreted proteins expressed within normal gastric mucosal cells. GKN2 expression is frequently lost during GC progression, suggesting an inhibitory role; however, a causal link remains unsubstantiated. Here, we developed Gkn2 knockout and transgenic overexpressing mice to investigate the functional impact of GKN2 loss in GC pathogenesis. In mouse models of GC, decreased GKN2 expression correlated with gastric pathology that paralleled human GC progression. At baseline, Gkn2 knockout mice exhibited defective gastric epithelial differentiation but not malignant progression. Conversely, Gkn2 knockout in the IL-11/STAT3-dependent gp130[superscript F/F] GC model caused tumorigenesis of the proximal stomach. Additionally, gastric immunopathology was accelerated in Helicobacter pylori–infected Gkn2 knockout mice and was associated with augmented T helper cell type 1 (Th1) but not Th17 immunity. Heightened Th1 responses in Gkn2 knockout mice were linked to deregulated mucosal innate immunity and impaired myeloid-derived suppressor cell activation. Finally, transgenic overexpression of human gastrokines (GKNs) attenuated gastric tumor growth in gp130[superscript F/F] mice. Together, these results reveal an antiinflammatory role for GKN2, provide in vivo evidence that links GKN2 loss to GC pathogenesis, and suggest GKN restoration as a strategy to restrain GC progression

    Predicting growth and curve progression in the individual patient with adolescent idiopathic scoliosis: design of a prospective longitudinal cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scoliosis is present in 3-5% of the children in the adolescent age group, with a higher incidence in females. Treatment of adolescent idiopathic scoliosis is mainly dependent on the progression of the scoliotic curve. There is a close relationship between curve progression and rapid (spinal) growth of the patient during puberty. However, until present time no conclusive method was found for predicting the timing and magnitude of the pubertal growth spurt in total body height, or the curve progression of the idiopathic scoliosis.</p> <p>The goal of this study is to determine the predictive value of several maturity indicators that reflect growth or remaining growth potential, in order to predict timing of the peak growth velocity of total body height in the individual patient with adolescent idiopathic scoliosis. Furthermore, different parameters are evaluated for their correlation with curve progression in the individual scoliosis patient.</p> <p>Methods/design</p> <p>This prospective, longitudinal cohort study will be incorporated in the usual care of patients with adolescent idiopathic scoliosis. All new patients between 8 and 17 years with adolescent idiopathic scoliosis (Cobb angle >10 degrees) visiting the outpatient clinic of the University Medical Center Groningen are included in this study. Follow up will take place every 6 months. The present study will use a new ultra-low dose X-ray system which can make total body X-rays. Several maturity indicators are evaluated like different body length dimensions, secondary sexual characteristics, skeletal age in hand and wrist, skeletal age in the elbow, the Risser sign, the status of the triradiate cartilage, and EMG ratios of the paraspinal muscle activity.</p> <p>Correlations of all dimensions will be calculated in relationship to the timing of the pubertal growth spurt, and to the progression of the scoliotic curve. An algorithm will be made for the optimal treatment strategy in the individual patient with adolescent idiopathic scoliosis.</p> <p>Discussion</p> <p>This study will determine the value of many maturity indicators and will be useful as well for other clinicians treating children with disorders of growth. Since not all clinicians have access to the presented new 3D X-ray system or have the time to make EMG's, for example, all indicators will be correlated to the timing of the peak growth velocity of total body height and curve progression in idiopathic scoliosis. Therefore each clinician can chose which indicators can be used best in their practice.</p> <p>Trial registration number</p> <p>NTR2048</p

    Interdisciplinary project-based learning: technology for improving student cognition

    Get PDF
    The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural State University of Economics resulted in a computer-assisted learning system (CALS) designed by IT students. The CALS was used in an analytical chemistry course with students majoring in Commodities Management and Expertise (‘expert’ students). To test how effective the technology was, the control and experimental groups were formed. In the control group, learning was done with traditional methods. In the experimental group, it was reinforced by IPBL. A statistical analysis of the results, with an application of Pearson χ 2 test, showed that the cognitive levels in both IT and ‘expert’ experimental groups improved as compared with the control groups. The findings demonstrated that IPBL can significantly enhance learning. It can be implemented in any institution of higher or secondary education that promotes learning, including the CALS development and its use for solving problems in different subject areas

    A Novel Non-Lens βγ−Crystallin and Trefoil Factor Complex from Amphibian Skin and Its Functional Implications

    Get PDF
    In vertebrates, non-lens betagamma-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive.A naturally existing 72-kDa complex of non-lens betagamma-crystallin (alpha-subunit) and trefoil factor (beta-subunit), named betagamma-CAT, was identified from frog Bombina maxima skin secretions. Its alpha-subunit and beta-subunit (containing three trefoil factor domains), with a non-covalently linked form of alphabeta(2), show significant sequence homology to ep37 proteins, a group of non-lens betagamma-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. betagamma-CAT showed potent hemolytic activity on mammalian erythrocytes. The specific antiserum against each subunit was able to neutralize its hemolytic activity, indicating that the two subunits are functionally associated. betagamma-CAT formed membrane pores with a functional diameter about 2.0 nm, leading to K(+) efflux and colloid-osmotic hemolysis. High molecular weight SDS-stable oligomers (>240-kDa) were detected by antibodies against the alpha-subunit with Western blotting. Furthermore, betagamma-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of betagamma-CAT (25-50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC(50) 10 nM) and apoptosis. betagamma-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. Bafilomycin A1 (a specific inhibitor of the vacuolar-type ATPase) and nocodazole (an agent of microtuble depolymerizing), while inhibited betagamma-CAT induced vacuole formation, significantly inhibited betagamma-CAT induced cell detachment, suggesting that betagamma-CAT endocytosis is important for its activities.These findings illustrate novel cellular functions of non-lens betagamma-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals

    The Effect of OPA1 on Mitochondrial Ca2+ Signaling

    Get PDF
    The dynamin-related GTPase protein OPA1, localized in the intermembrane space and tethered to the inner membrane of mitochondria, participates in the fusion of these organelles. Its mutation is the most prevalent cause of Autosomal Dominant Optic Atrophy. OPA1 controls the diameter of the junctions between the boundary part of the inner membrane and the membrane of cristae and reduces the diffusibility of cytochrome c through these junctions. We postulated that if significant Ca2+ uptake into the matrix occurs from the lumen of the cristae, reduced expression of OPA1 would increase the access of Ca2+ to the transporters in the crista membrane and thus would enhance Ca2+ uptake. In intact H295R adrenocortical and HeLa cells cytosolic Ca2+ signals evoked with K+ and histamine, respectively, were transferred into the mitochondria. The rate and amplitude of mitochondrial [Ca2+] rise (followed with confocal laser scanning microscopy and FRET measurements with fluorescent wide-field microscopy) were increased after knockdown of OPA1, as compared with cells transfected with control RNA or mitofusin1 siRNA. Ca2+ uptake was enhanced despite reduced mitochondrial membrane potential. In permeabilized cells the rate of Ca2+ uptake by depolarized mitochondria was also increased in OPA1-silenced cells. The participation of Na+/Ca2+ and Ca2+/H+ antiporters in this transport process is indicated by pharmacological data. Altogether, our observations reveal the significance of OPA1 in the control of mitochondrial Ca2+ metabolism

    Differential Proteome Analysis of Bone Marrow Mesenchymal Stem Cells from Adolescent Idiopathic Scoliosis Patients

    Get PDF
    Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity of the spine. The cause and pathogenesis of scoliosis and the accompanying generalized osteopenia remain unclear despite decades of extensive research. In this study, we utilized two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) to analyze the differential proteome of bone marrow mesenchymal stem cells (BM-MSCs) from AIS patients. In total, 41 significantly altered protein spots were detected, of which 34 spots were identified by MALDI-TOF/TOF analysis and found to represent 25 distinct gene products. Among these proteins, five related to bone growth and development, including pyruvate kinase M2, annexin A2, heat shock 27 kDa protein, γ-actin, and β-actin, were found to be dysregulated and therefore selected for further validation by Western blot analysis. At the protein level, our results supported the previous hypothesis that decreased osteogenic differentiation ability of MSCs is one of the mechanisms leading to osteopenia in AIS. In summary, we analyzed the differential BM-MSCs proteome of AIS patients for the first time, which may help to elucidate the underlying molecular mechanisms of bone loss in AIS and also increase understanding of the etiology and pathogenesis of AIS
    corecore