7,661 research outputs found

    Celebrating 70: An Interview with Don Berry

    Full text link
    Donald (Don) Arthur Berry, born May 26, 1940 in Southbridge, Massachusetts, earned his A.B. degree in mathematics from Dartmouth College and his M.A. and Ph.D. in statistics from Yale University. He served first on the faculty at the University of Minnesota and subsequently held endowed chair positions at Duke University and The University of Texas M.D. Anderson Center. At the time of the interview he served as Head of the Division of Quantitative Sciences, and Chairman and Professor of the Department of Biostatistics at UT M.D. Anderson Center.Comment: Published in at http://dx.doi.org/10.1214/11-STS366 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exact Computation of Influence Spread by Binary Decision Diagrams

    Full text link
    Evaluating influence spread in social networks is a fundamental procedure to estimate the word-of-mouth effect in viral marketing. There are enormous studies about this topic; however, under the standard stochastic cascade models, the exact computation of influence spread is known to be #P-hard. Thus, the existing studies have used Monte-Carlo simulation-based approximations to avoid exact computation. We propose the first algorithm to compute influence spread exactly under the independent cascade model. The algorithm first constructs binary decision diagrams (BDDs) for all possible realizations of influence spread, then computes influence spread by dynamic programming on the constructed BDDs. To construct the BDDs efficiently, we designed a new frontier-based search-type procedure. The constructed BDDs can also be used to solve other influence-spread related problems, such as random sampling without rejection, conditional influence spread evaluation, dynamic probability update, and gradient computation for probability optimization problems. We conducted computational experiments to evaluate the proposed algorithm. The algorithm successfully computed influence spread on real-world networks with a hundred edges in a reasonable time, which is quite impossible by the naive algorithm. We also conducted an experiment to evaluate the accuracy of the Monte-Carlo simulation-based approximation by comparing exact influence spread obtained by the proposed algorithm.Comment: WWW'1

    Charmless BPV,VVB \to PV, VV decays and new physics effects in the mSUGRA model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless BPV B \to PV and BVVB \to VV decays in the framework of the minimal supergravity (mSUGRA) model. we choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient C7γ(mb)C_{7\gamma}(m_b) can be either SM-like (the case A and C) or has a flipped-sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about 3030% \sim 260% to the branching ratios of BK(π,ϕ,ρ)B \to K^*(\pi,\phi,\rho) and KϕK \phi decays, but a reduction about 3030% \sim 80% to BK(ρ,ω) B\to K(\rho, \omega) decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version

    The Dense Plasma Torus Around the Nucleus of an Active Galaxy NGC 1052

    Full text link
    A subparsec-scale dense plasma torus around an active galactic nucleus (AGN) is unveiled. We report on very-long-baseline interferometry (VLBI) observations at 2.3, 8.4, and 15.4 GHz towards the active galaxy NGC 1052. The convex spectra of the double-sided jets and the nucleus imply that synchrotron emission is obscured through free--free absorption (FFA) by the foreground cold dense plasma. A trichromatic image was produced to illustrate the distribution of the FFA opacity. We found a central condensation of the plasma which covers about 0.1 pc and 0.7 pc of the approaching and receding jets, respectively. A simple explanation for the asymmetric distribution is the existence of a thick plasma torus perpendicular to the jets. We also found an ambient FFA absorber, whose density profile can be ascribed to a spherical distribution of the isothermal King model. The coexistence of torus-like and spherical distributions of the plasma suggests a transition from radial accretion to rotational accretion around the nucleus.Comment: 10 pages, to appear in Publ. Astron. Soc. Japan, vol.53, No.2 (2001

    High Resolution VSOP Imaging of a Southern Blazar PKS 1921-293 at 1.6 GHz

    Get PDF
    We present a high resolution 1.6 GHz VSOP image of the southern blazar PKS 1921-293. The image shows a typical core-jet morphology, consistent with ground-based VLBI images. However, the addition of data from the space antenna has greatly improved the angular resolution (especially along the north-south direction for this source), and thus allowed us to clearly identify the core. Model fitting reveals an inner jet component ~1.5 mas north of the core. This jet feature may be moving on a common curved path connecting the jet within a few parsecs to the 10-parsec-scale jet. The compact core has a brightness temperature of 2.6*10**12 K (in the rest frame of the quasar), an indication of relativistic beaming. We analyzed the source in terms of three models, involving the inverse Compton catastrophe, an inhomogeneous relativistic jet, and the equipartition of energy between the radiating particles and the magnetic field. Our analysis of this gamma-ray-quiet blazar shows no preference to any particular one of these models.Comment: 7 pages including 2 figures and 1 table, PASJLaTeX, accepted for publication in PAS

    Scherk-Schwarz Supersymmetry Breaking for Quasi-localized Matter Fields and Supersymmetry Flavor Violation

    Full text link
    We examine the soft supersymmetry breaking parameters induced by the Scherk-Schwarz (SS) boundary condition in 5-dimensional orbifold field theory in which the quark and lepton zero modes are quasi-localized at the orbifold fixed points to generate the hierarchical Yukawa couplings. In such theories, the radion corresponds to a flavon to generate the flavor hierarchy and at the same time plays the role of the messenger of supersymmetry breaking. As a consequence, the resulting soft scalar masses and trilinear AA-parameters of matter zero modes at the compactification scale are highly flavor-dependent, thereby can lead to dangerous flavor violations at low energy scales. We analyze in detail the low energy flavor violations in SS-dominated supersymmetry breaking scenario under the assumption that the compactification scale is close to the grand unification scale and the 4-dimensional effective theory below the compactification scale is given by the minimal supersymmetric standard model. Our analysis can be applied to any supersymmetry breaking mechanism giving a sizable FF-component of the radion superfield, e.g. the hidden gaugino condensation model.Comment: revtex4, 22 pages, some numerical errors are corrected in phenomenological analysis, main conclusion does not chang

    Morphologically defined sub-stages of C. elegans vulval development in the fourth larval stage

    Get PDF
    Background: During the fourth larval (L4) stage, vulval cells of C. elegans undergo extensive morphogenesis accompanied by changes in gene expression. This phase of vulval development, occurring after the well-studied induction of vulval cells, is not well understood but is potentially a useful context in which to study how a complex temporal sequence of events is regulated during development. However, a system for precisely describing different phases of vulval development in the L4 stage has been lacking. Results: We defined ten sub-stages of L4 based on morphological criteria as observed using Nomarski microscopy (L4.0 ~ L4.9). Precise timing of each sub-stage at 20 °C was determined. We also re-examined the timing of expression for several gene expression markers, and correlated the sub-stages with the timing of other developmental events in the vulva and the uterus. Conclusions: This scheme allows the developmental timing of an L4 individual to be determined at approximately one-hour resolution without the need to resort to time course experiments. These well-defined developmental stages will enable more precise description of gene expression and other developmental events

    Gap-mediated magnetization of a pseudo-one-dimensional system with a spin-orbit interaction

    Full text link
    We argue that a pseudo-one-dimensional electron gas is magnetized when a voltage bias is applied with the Fermi level tuned to be in the energy gap generated by a spin-orbit interaction. The magnetization is an indication of spin-carrying currents due to the spin-orbit interaction. The origin of the magnetization, however, is essentially different from the "spin accumulation" in two-dimensional systems with spin-orbit interactions.Comment: 6 pages, 7 figures; to appear in Solid State Communication

    Radiative Electroweak Breaking with Pseudogoldstone Higgs Doublets

    Get PDF
    We consider a realistic example of supersymmetric grand unification based on SU(3)c×SU(3)L×SU(3)RSU(3)_c \times SU(3)_L \times SU(3)_R in which the electroweak (EW) higgs doublets are `light' as a consequence of the `pseudogoldstone' mechanism. We discuss radiative EW breaking in this model, exploring in particular the `small' (order unity) and `large' (mt/mb)(\approx m_t/m_b) tanβ\tan \beta regions by studying the variations of r(μ1,22/μ32)r (\equiv \sqrt{\mu^2_{1,2}/\mu^2_3}), where μ1,2,32\mu^2_{1,2,3} are the well known MSSM parameters evaluated at the GUT scale. For rr sufficiently close to unity the quantity tanβ\tan \beta can be of order unity, but the converse is not always true.Comment: 18 pages plain LaTeX (to be run twice) and 11 figures available separately from uuencoded file

    Single-hole properties in the tt-JJ and strong-coupling models

    Full text link
    We report numerical results for the single-hole properties in the tt-JJ model and the strong-coupling approximation to the Hubbard model in two dimensions. Using the hopping basis with over 10610^6 states we discuss (for an infinite system) the bandwidth, the leading Fourier coefficients in the dispersion, the band masses, and the spin-spin correlations near the hole. We compare our results with those obtained by other methods. The band minimum is found to be at (π/2,π/2\pi/2,\pi/2) for the tt-JJ model for 0.1t/J100.1 \leq t/J \leq 10, and for the strong-coupling model for 1t/J101 \leq t/J \leq 10. The bandwidth in both models is approximately 2J2J at large t/Jt/J, in rough agreement with loop-expansion results but in disagreement with other results. The strong-coupling bandwidth for t/J\agt6 can be obtained from the tt-JJ model by treating the three-site terms in first-order perturbation theory. The dispersion along the magnetic zone face is flat, giving a large parallel/perpendicular band mass ratio.Comment: 1 RevTeX file with epsf directives to include 8 .eps figures 8 figure files encoded using uufile
    corecore