4 research outputs found

    Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells

    Get PDF
    July 3, 2012Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure–function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin α[subscript v]β[subscript 3] and α[subscript v]β[subscript 5] engagement with adsorbed vitronectin to promote colony formation. The structure–function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.National Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869)National Institutes of Health (U.S.) (Grant RO1-HD045022)National Institutes of Health (U.S.) (Grant DE016516)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-07-D-0004

    Emergent Properties of Nanosensor Arrays: Applications for Monitoring IgG Affinity Distributions, Weakly Affined Hypermannosylation, and Colony Selection for Biomanufacturing

    No full text
    It is widely recognized that an array of addressable sensors can be multiplexed for the label-free detection of a library of analytes. However, such arrays have useful properties that emerge from the ensemble, even when monofunctionalized. As examples, we show that an array of nanosensors can estimate the mean and variance of the observed dissociation constant (<i>K</i><sub>D</sub>), using three different examples of binding IgG with Protein A as the recognition site, including polyclonal human IgG (<i>K</i><sub>D</sub> μ = 19 μM, σ<sup>2</sup> = 1000 mM<sup>2</sup>), murine IgG (<i>K</i><sub>D</sub> μ = 4.3 nM, σ<sup>2</sup> = 3 μM<sup>2</sup>), and human IgG from CHO cells (<i>K</i><sub>D</sub> μ = 2.5 nM, σ<sup>2</sup> = 0.01 μM<sup>2</sup>). Second, we show that an array of nanosensors can uniquely monitor weakly affined analyte interactions <i>via</i> the increased number of observed interactions. One application involves monitoring the metabolically induced hypermannosylation of human IgG from CHO using PSA-lectin conjugated sensor arrays where temporal glycosylation patterns are measured and compared. Finally, the array of sensors can also spatially map the local production of an analyte from cellular biosynthesis. As an example, we rank productivity of IgG-producing HEK colonies cultured directly on the array of nanosensors itself

    Poster presentations.

    No full text
    corecore