136 research outputs found
Is Primary Fixation with the Sliding Hip Screw Introduced into the Non-ideal Position Sufficient for Stable Pertrochanteric Fracture Stabilisation? A Biomechanical Evaluation and Experimental Study
Purpose: Proximal femoral fractures are most commonly sustained fractures in the elderly. The one of the current treatment option of stable pertrochanteric fracture is Sliding Hip Screw. The necessity of a repeat surgery, due to the failure of the first osteosynthesis, may jeopardize the patient's life. Common causes of a failure include: fracture pattern, implant position, implant's properties and the bone quality. Each screw position variant results in damage to various load-bearing bone structures during healing. The aim of this study was analysis of different screw positions with focuse on the risky position with the need of the intra-operative implant reintroduction.Methods: With the use of a numerical computational model and finite element methods, the authors analyzed five positions of Sliding Hip Screw in the proximal femur, with the objective of determining positions with an increased risk of failure. The ideal position was in the middle third of the femoral neck anchored subchondrally.Results: In model situations, it has been shown that in stable fractures the screw position in proximal third of the femoral neck significantly increased the strain of the plate and screw and may lead to the osteosynthesis failure. The other analysed positions do not significantly increase the risk of failure for entire fixation. Conclusions: It is not necessary to re-introduce Sliding Hip Screw into the ideal position (except placening in the proximal third of the neck) during the surgery. Damage to load-bearing structures relative to various implant placements does not impact the resultant overall fixation stability
Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers
Magnetic properties of thin (Ga,Mn)As layers improve during annealing by
out-diffusion of interstitial Mn ions to a free surface. Out-diffused Mn atoms
participate in the growth of a Mn-rich surface layer and a saturation of this
layer causes an inhibition of the out-diffusion. We combine high-resolution
x-ray diffraction with x-ray absorption spectroscopy and a numerical solution
of the diffusion problem for the study of the out-diffusion of Mn interstitials
during a sequence of annealing steps. Our data demonstrate that the
out-diffusion of the interstitials is substantially affected by the internal
electric field caused by an inhomogeneous distribution of charges in the
(Ga,Mn)As layer.Comment: 11 pages, 5 figure
Disc-oscillation resonance and neutron star QPOs: 3:2 epicyclic orbital model
The high-frequency quasi-periodic oscillations (HF QPOs) that appear in the
X-ray fluxes of low-mass X-ray binaries remain an unexplained phenomenon. Among
other ideas, it has been suggested that a non-linear resonance between two
oscillation modes in an accretion disc orbiting either a black hole or a
neutron star plays a role in exciting the observed modulation. Several possible
resonances have been discussed. A particular model assumes resonances in which
the disc-oscillation modes have the eigenfrequencies equal to the radial and
vertical epicyclic frequencies of geodesic orbital motion. This model has been
discussed for black hole microquasar sources as well as for a group of neutron
star sources. Assuming several neutron (strange) star equations of state and
Hartle-Thorne geometry of rotating stars, we briefly compare the frequencies
expected from the model to those observed. Our comparison implies that the
inferred neutron star radius "RNS" is larger than the related radius of the
marginally stable circular orbit "rms" for nuclear matter equations of state
and spin frequencies up to 800Hz. For the same range of spin and a strange star
(MIT) equation of state, the inferrred radius RNS is roughly equal to rms. The
Paczynski modulation mechanism considered within the model requires that RNS <
rms. However, we find this condition to be fulfilled only for the strange
matter equation of state, masses below one solar mass, and spin frequencies
above 800Hz. This result most likely falsifies the postulation of the neutron
star 3:2 resonant eigenfrequencies being equal to the frequencies of geodesic
radial and vertical epicyclic modes. We suggest that the 3:2 epicyclic modes
could stay among the possible choices only if a fairly non-geodesic accretion
flow is assumed, or if a different modulation mechanism operates.Comment: 7 pages, 4 figures (in colour), accepted for publication in Astronomy
& Astrophysic
Preliminary measurements of lumbar spine kinematics and stiffness
The purpose of the presented study was the experimental measurement of lumbar spine stiffness and its range of motion. The dependence of torsion moment of lumbar spine segment on deflection of flexion, extension and torsion was observed during experiments. Stiffness of spine segment was determined from measured data. Human lumbar spine was used for verification of the experimental technique. The sample consisted of one lumbar vertebrae composed by five vertebral bodies and four intervertebral discs. All muscles were removed, however all ligaments were preserved. Experiments were ca rried out on the test system MTS 858.2 MiniBionix, where loading by axial force and torsion moment is possible at the same time. Special Modular Bionix Spine Test Fixator, attached to the test system was used for the measurements. Loading was controlled kinematically (gradual turning) by keeping the axial force equal zero. Measurement was timedependent. The results of these experiments are going to be used as input data for creating a model of artificial lumbar spine and new type of artificial disc replacement
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Anomalous Magnetoresistance by Breaking Ice Rule in Bi2Ir2O7/Dy2Ti2O7 Heterostructure
While geometrically frustrated quantum magnets are known for a variety of
exotic spin states that are of great interests of understanding emergent
phenomena as well as enabling revolutionary quantum technologies, most of them
are necessarily good insulators which are difficult to be integrated with
modern electrical circuit that relies on moving charge carriers. The grand
challenge of converting fluctuations and excitations of frustrated moments into
electronic responses is finding ways to introduce charge carriers that interact
with the localized spins without destroying the spin states. Here, we show
that, by designing a Bi2Ir2O7/Dy2Ti2O7 heterostructure, the breaking of the
spin ice rule in insulating Dy2Ti2O7 can lead to a charge response in the
Bi2Ir2O7 conducting layer that can be detected as anomalous magnetoresistance.
These results demonstrate a novel and feasible interfacial approach for
electronically probing exotic spin states in insulating magnets, laying out a
blueprint for the metallization of frustrated quantum magnets
Farsighted Risk Mitigation of Lateral Movement Using Dynamic Cognitive Honeypots
Lateral movement of advanced persistent threats has posed a severe security
challenge. Due to the stealthy and persistent nature of the lateral movement,
defenders need to consider time and spatial locations holistically to discover
latent attack paths across a large time-scale and achieve long-term security
for the target assets. In this work, we propose a time-expanded random network
to model the stochastic service links in the user-host enterprise network and
the adversarial lateral movement. We design cognitive honeypots at idle
production nodes and disguise honey links as service links to detect and deter
the adversarial lateral movement. The location of the honeypot changes randomly
at different times and increases the honeypots' stealthiness. Since the
defender does not know whether, when, and where the initial intrusion and the
lateral movement occur, the honeypot policy aims to reduce the target assets'
Long-Term Vulnerability (LTV) for proactive and persistent protection. We
further characterize three tradeoffs, i.e., the probability of interference,
the stealthiness level, and the roaming cost. To counter the curse of multiple
attack paths, we propose an iterative algorithm and approximate the LTV with
the union bound for computationally efficient deployment of cognitive
honeypots. The results of the vulnerability analysis illustrate the bounds,
trends, and a residue of LTV when the adversarial lateral movement has infinite
duration. Besides honeypot policies, we obtain a critical threshold of
compromisability to guide the design and modification of the current system
parameters for a higher level of long-term security. We show that the target
node can achieve zero vulnerability under infinite stages of lateral movement
if the probability of movement deterrence is not less than the threshold
Between proper and strong edge-colorings of subcubic graphs
In a proper edge-coloring the edges of every color form a matching. A
matching is induced if the end-vertices of its edges induce a matching. A
strong edge-coloring is an edge-coloring in which the edges of every color form
an induced matching. We consider intermediate types of edge-colorings, where
edges of some colors are allowed to form matchings, and the remaining form
induced matchings. Our research is motivated by the conjecture proposed in a
recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing
edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75)
asserting that by allowing three additional induced matchings, one is able to
save one matching color. We prove that every graph with maximum degree 3 can be
decomposed into one matching and at most 8 induced matchings, and two matchings
and at most 5 induced matchings. We also show that if a graph is in class I,
the number of induced matchings can be decreased by one, hence confirming the
above-mentioned conjecture for class I graphs
Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities - comparison with the black hole case and possible instability of naked singularity accretion discs
Relativistic Keplerian orbital frequency and related epicyclic frequencies
play an important role in physics of accretion discs orbiting Kerr black holes
and can by resonant or trapping effects explain quasiperiodic oscillations
observed in microquasars. Because of growing theoretical evidence on possible
existence of naked singularities, we discuss behaviour of the fundamenal
orbital frequencies for Keplerian motion in the field of Kerr naked
singularities, primarily in order to find phenomena that could observationally
distinguish a hypothetical naked singularity from black holes. Some
astrophysically important consequences are sketched, namely the existence of
strong resonant frequency for all Kerr naked singularities, with radial and
vertical epicyclic frequencies being equal at well defined radius.Comment: 15 pages, 12 figure
- âŠ