171 research outputs found
Negative Oxygen Isotope Effect on the Static Spin Stripe Order in La_(2-x)Ba_xCuO_4 (x = 1/8)
Large negative oxygen-isotope (16O/18O) effects (OIE's) on the static
spin-stripe ordering temperature T_so and the magnetic volume fraction V_m were
observed in La_(2-x)Ba_xCuO_4 (x = 1/8) by means of muon spin rotation
experiments. The corresponding OIE exponents were found to be alpha_(T_so) =
-0.57(6) and alpha_(V_m) = -0.71(9), which are sign reversed to alpha_(T_c) =
0.46(6) measured for the superconducting transition temperature T_c. This
indicates that the electron-lattice interaction is involved in the stripe
formation and plays an important role in the competition between bulk
superconductivity and static stripe order in the cuprates.Comment: 5 pages, 4 figure
Lattice and polarizability mediated spin activity in EuTiO_3
EuTiO_3 is shown to exhibit novel strong spin-charge-lattice coupling deep in
the paramagnetic phase. Its existence is evidenced by an, until now, unknown
response of the paramagnetic susceptibility at temperatures exceeding the
structural phase transition temperature T_S = 282K. The "extra" features in the
susceptibility follow the rotational soft zone boundary mode temperature
dependence above and below T_S. The theoretical modeling consistently
reproduces this behavior and provides reasoning for the stabilization of the
soft optic mode other than quantum fluctuations.Comment: 8 pages, 4 figure
Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure
We report muon spin rotation experiments on the magnetic penetration depth
lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based
high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65)
studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find
that in this system lambda^{-2}(T) is best described by d-wave scenario. This
is in contrast to the case of the optimally doped x = 0.35 system which is
known to be a nodeless s^{+-}-wave superconductor. This suggests that the
doping induces the change of the pairing symmetry from s^{+-} to d-wave in
Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order
parameter is robust against pressure, suggesting that d is the common and
dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application
of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %,
while at optimal doping x = 0.35 a significant decrease of lambda(0) was
reported. The superconducting transition temperature T_c as well as the gap to
T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining
the present data with those previously obtained for optimally doped system x =
0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well
as the pressure effects on the SC quantities strongly depend on the Rb doping
level. These results are discussed in the light of the putative Lifshitz
transition, i.e., a disappearance of the electron pockets in the Fermi surface
of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review
Field-induced transition of the magnetic ground state from A-type antiferromagnetic to ferromagnetic order in CsCo2Se2
We report on the magnetic properties of CsCoSe with ThCrSi
structure, which we have characterized through a series of magnetization and
neutron diffraction measurements. We find that CsCoSe2 undergoes a
phase transition to an antiferromagnetically ordered state with a N\'eel
temperature of 66 K. The nearest neighbour interactions are
ferromagnetic as observed by the positive Curie-Weiss temperature of 51.0 K. We find that the magnetic structure of CsCoSe consists
of ferromagnetic sheets, which are stacked antiferromagnetically along the
tetragonal \textit{c}-axis, generally referred to as A-type antiferromagnetic
order. The observed magnitude of the ordered magnetic moment at = 1.5 K is
found to be only 0.20(1)/Co. Already in comparably small
magnetic fields of (5K) 0.3 T, we observe a
metamagnetic transition that can be attributed to spin-rearrangements of
CsCoSe, with the moments fully ferromagnetically saturated in a
magnetic field of (5K) 6.4 T. We discuss the entire
experimentally deduced magnetic phase diagram for CsCoSe with respect
to its unconventionally weak magnetic coupling. Our study characterizes
CsCoSe, which is chemically and electronically posed closely to the
superconductors, as a host of versatile magnetic
interactions
Hydrostatic pressure effects on the static magnetism in Eu(FeCo)As
The effects of hydrostatic pressure on the static magnetism in
Eu(FeCo)As are investigated by complementary
electrical resistivity, ac magnetic susceptibility and single-crystal neutron
diffraction measurements. A specific pressure-temperature phase diagram of
Eu(FeCo)As is established. The structural phase
transition, as well as the spin-density-wave order of Fe sublattice, is
suppressed gradually with increasing pressure and disappears completely above
2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the
whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic
variation with pressure. With the increase of the hydrostatic pressure, the
magnetic state of Eu evolves from the canted antiferromagnetic structure in the
ground state, via a pure ferromagnetic structure under the intermediate
pressure, finally to a possible "novel" antiferromagnetic structure under the
high pressure. The strong ferromagnetism of Eu coexists with the
pressure-induced superconductivity around 2 GPa. The change of the magnetic
state of Eu in Eu(FeCo)As upon the application
of hydrostatic pressure probably arises from the modification of the indirect
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu moments
tuned by external pressure.Comment: 9 pages, 6 figure
High pressure magnetic state of MnP probed by means of muon-spin rotation
We report a detailed SR study of the pressure evolution of the magnetic
order in the manganese based pnictide MnP, which has been recently found to
undergo a superconducting transition under pressure once the magnetic ground
state is suppressed. Using the muon as a volume sensitive local magnetic probe,
we identify a ferromagnetic state as well as two incommensurate helical states
(with propagation vectors aligned along the crystallographic and
directions, respectively) which transform into each other through first
order phase transitions as a function of pressure and temperature. Our data
appear to support that the magnetic state from which superconductivity develops
at higher pressures is an incommensurate helical phase.Comment: 11 pages, 9 figure
Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}
The magnetic phase diagram of EuFe(AsP) was
investigated by means of magnetization and muon-spin rotation studies as a
function of chemical (isovalent substitution of As by P) and hydrostatic
pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe
spins with respect to P content and hydrostatic pressure are determined and
discussed. The present investigations reveal that the magnetic coupling between
the Eu and the Fe sublattices strongly depends on chemical and hydrostatic
pressure. It is found that chemical and hydrostatic pressure have a similar
effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure
- …