10 research outputs found

    The potential risks and impact of the start of the 2015–2016 influenza season in the WHO European Region: a rapid risk assessment

    Get PDF
    Background: Countries in the World Health Organization (WHO) European Region are reporting more severe influenza activity in the 2015–2016 season compared to previous seasons. Objectives: To conduct a rapid risk assessment to provide interim information on the severity of the current influenza season. Methods: Using the WHO manual for rapid risk assessment of acute public health events and surveillance data available from Flu News Europe, an assessment of the current influenza season from 28 September 2015 (week 40/2015) up to 31 January 2016 (week 04/2016) was made compared with the four previous seasons. Results: The current influenza season started around week 51/2015 with higher influenza activity reported in Eastern Europe compared to Western Europe. There is a strong predominance of influenza A(H1N1)pdm09 compared to previous seasons, but the virus is antigenically similar to the strain included in the seasonal influenza vaccine. Compared to the 2014/2015 season, there was a rapid increase in the number of severe cases in Eastern European countries with the majority of such cases occurring among adults aged < 65 years. Conclusions: The current influenza season is characterized by an early start in Eastern European countries, with indications of a more severe season. Currently circulating influenza A(H1N1)pdm09 viruses are antigenically similar to those included in the seasonal influenza vaccine, and the vaccine is expected to be effective. Authorities should provide information to the public and health providers about the current influenza season, recommendations for the treatment of severe disease and effective public health measures to prevent influenza transmission

    Very low oxygen concentration (0.1%) reveals two FDCP-Mix cell subpopulations that differ by their cell cycling, differentiation and p27KIP1 expression

    No full text
    Oxygen (O2) concentrations in bone marrow vary from 4% in capillaries to <0.1% in subendosteum, in which hematopoietic stem cells reside in specific niches. Culture at low O2 concentrations (3, 1 and 0.1%) influences hematopoietic stem and progenitor cells survival, proliferation and differentiation, depending on their level of differentiation. Culture of human CD34+ cells at low O2 concentrations (O2 ⩽3%) maintains stem cell engraftment potential better than at 20% O2 (NOD/Scid xenograft model). In contrast, progenitors disappear from cultures at/or <1% O2 concentrations. A very low O2 concentration (0.1%) induces CD34+ quiescence in G0. The exploration of molecules and mechanisms involved in hematopoietic stem and progenitor cells' quiescence and differentiation related to low O2 concentrations is unfeasible with primary CD34+ cells. Therefore, we performed it using murine hematopoietic nonleukemic factor-dependent cell Paterson (FDCP)-Mix progenitor cell line. The culture of the FDCP-Mix line at 0.1% O2 induced in parallel G0 quiescence and granulo-monocytic differentiation of most cells, whereas a minority of undifferentiated self-renewing cells remained in active cell cycle. Hypoxia also induced hypophosphorylation of pRb and increased the expression of p27KIP1, the two proteins that have a major role in the control of G0 and G1 to S-phase transition

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    PurposeIn the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials.MethodsWe carried out a prospective international cohort study of adult patients (&gt;= 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021.Results2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28.ConclusionsHA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes

    Presentation, management, and outcomes of older compared to younger adults with hospital-acquired bloodstream infections in the intensive care unit: a multicenter cohort study

    No full text
    Purpose: Older adults admitted to the intensive care unit (ICU) usually have fair baseline functional capacity, yet their age and frailty may compromise their management. We compared the characteristics and management of older (≥ 75&nbsp;years) versus younger adults hospitalized in ICU with hospital-acquired bloodstream infection (HA-BSI). Methods: Nested cohort study within the EUROBACT-2 database, a multinational prospective cohort study including adults (≥ 18&nbsp;years) hospitalized in the ICU during 2019-2021. We compared older versus younger adults in terms of infection characteristics (clinical signs and symptoms, source, and microbiological data), management (imaging, source control, antimicrobial therapy), and outcomes (28-day mortality and hospital discharge). Results: Among 2111 individuals hospitalized in 219 ICUs with HA-BSI, 563 (27%) were ≥ 75&nbsp;years old. Compared to younger patients, these individuals had higher comorbidity score and lower functional capacity; presented more often with a pulmonary, urinary, or unknown HA-BSI source; and had lower heart rate, blood pressure and temperature at presentation. Pathogens and resistance rates were similar in both groups. Differences in management included mainly lower rates of effective source control achievement among aged individuals. Older adults also had significantly higher day-28 mortality (50% versus 34%, p &lt; 0.001), and lower rates of discharge from hospital (12% versus 20%, p &lt; 0.001) by this time. Conclusions: Older adults with HA-BSI hospitalized in ICU have different baseline characteristics and source of infection compared to younger patients. Management of older adults differs mainly by lower probability to achieve source control. This should be targeted to improve outcomes among older ICU patients

    The role of centre and country factors on process and outcome indicators in critically ill patients with hospital-acquired bloodstream infections

    No full text
    Purpose: The primary objective of this study was to evaluate the associations between centre/country-based factors and two important process and outcome indicators in patients with hospital-acquired bloodstream infections (HABSI). Methods: We used data on HABSI from the prospective EUROBACT-2 study to evaluate the associations between centre/country factors on a process or an outcome indicator: adequacy of antimicrobial therapy within the first 24&nbsp;h or 28-day mortality, respectively. Mixed logistical models with clustering by centre identified factors associated with both indicators. Results: Two thousand two hundred nine patients from two hundred one intensive care units (ICUs) were included in forty-seven countries. Overall, 51% (n = 1128) of patients received an adequate antimicrobial therapy and the 28-day mortality was 38% (n = 839). The availability of therapeutic drug monitoring (TDM) for aminoglycosides everyday [odds ratio (OR) 1.48, 95% confidence interval (CI) 1.03-2.14] or within a few hours (OR 1.79, 95% CI 1.34-2.38), surveillance cultures for multidrug-resistant organism carriage performed weekly (OR 1.45, 95% CI 1.09-1.93), and increasing Human Development Index (HDI) values were associated with adequate antimicrobial therapy. The presence of intermediate care beds (OR 0.63, 95% CI 0.47-0.84), TDM for aminoglycoside available everyday (OR 0.66, 95% CI 0.44-1.00) or within a few hours (OR 0.51, 95% CI 0.37-0.70), 24/7 consultation of clinical pharmacists (OR 0.67, 95% CI 0.47-0.95), percentage of vancomycin-resistant enterococci (VRE) between 10% and 25% in the ICU (OR 1.67, 95% CI 1.00-2.80), and decreasing HDI values were associated with 28-day mortality. Conclusion: Centre/country factors should be targeted for future interventions to improve management strategies and outcome of HABSI in ICU patients

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore