3,554 research outputs found

    Self-guided wakefield experiments driven by petawatt class ultra-short laser pulses

    Full text link
    We investigate the extension of self-injecting laser wakefield experiments to the regime that will be accessible with the next generation of petawatt class ultra-short pulse laser systems. Using linear scalings, current experimental trends and numerical simulations we determine the optimal laser and target parameters, i.e. focusing geometry, plasma density and target length, that are required to increase the electron beam energy (to > 1 GeV) without the use of external guiding structures.Comment: 15 pages, 8 figure

    Exact Results for the One-Dimensional Self-Organized Critical Forest-Fire Model

    Full text link
    We present the analytic solution of the self-organized critical (SOC) forest-fire model in one dimension proving SOC in systems without conservation laws by analytic means. Under the condition that the system is in the steady state and very close to the critical point, we calculate the probability that a string of nn neighboring sites is occupied by a given configuration of trees. The critical exponent describing the size distribution of forest clusters is exactly τ=2\tau = 2 and does not change under certain changes of the model rules. Computer simulations confirm the analytic results.Comment: 12 pages REVTEX, 2 figures upon request, dro/93/

    Cellular Automata Simulating Experimental Properties of Traffic Flows

    Full text link
    A model for 1D traffic flow is developed, which is discrete in space and time. Like the cellular automaton model by Nagel and Schreckenberg [J. Phys. I France 2, 2221 (1992)], it is simple, fast, and can describe stop-and-go traffic. Due to its relation to the optimal velocity model by Bando et al. [Phys. Rev. E 51, 1035 (1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical data and displays the experimental features of traffic data recently reported by Kerner and Rehborn [Phys. Rev. E 53, R1297 (1996)].Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://traffic.comphys.uni-duisburg.de/member/home_schreck.htm

    Coupling of the lattice and superlattice deformations and hysteresis in thermal expansion for the quasi one-dimensional conductor TaS3_3

    Full text link
    An original interferometer-based setup for measurements of length of needle-like samples is developed, and thermal expansion of o-TaS3_3 crystals is studied. Below the Peierls transition the temperature hysteresis of length LL is observed, the width of the hysteresis loop δL/L\delta L/L being up to 51055 \cdot 10^{-5}. The behavior of the loop is anomalous: the length changes so that it is in front of its equilibrium value. The hysteresis loop couples with that of conductivity. The sign and the value of the length hysteresis are consistent with the strain dependence of the charge-density waves (CDW) wave vector. With lowering temperature down to 100 K the CDW elastic modulus grows achieving a value comparable with the lattice Young modulus. Our results could be helpful in consideration of different systems with intrinsic superstructures.Comment: 4 pages, 3 figures. Phys. Rev. Lett., accepted for publicatio

    Single-vehicle data of highway traffic - a statistical analysis

    Full text link
    In the present paper single-vehicle data of highway traffic are analyzed in great detail. By using the single-vehicle data directly empirical time-headway distributions and speed-distance relations can be established. Both quantities yield relevant information about the microscopic states. Several fundamental diagrams are also presented, which are based on time-averaged quantities and compared with earlier empirical investigations. In the remaining part time-series analyses of the averaged as well as the single-vehicle data are carried out. The results will be used in order to propose objective criteria for an identification of the different traffic states, e.g. synchronized traffic.Comment: 12 pages, 19 figures, RevTe

    Influence of realistic parameters on state-of-the-art LWFA experiments

    Full text link
    We examine the influence of non-ideal plasma-density and non-Gaussian transverse laser-intensity profiles in the laser wakefield accelerator analytically and numerically. We find that the characteristic amplitude and scale length of longitudinal density fluctuations impacts on the final energies achieved by electron bunches. Conditions that minimize the role of the longitudinal plasma density fluctuations are found. The influence of higher order Laguerre-Gaussian laser pulses is also investigated. We find that higher order laser modes typically lead to lower energy gains. Certain combinations of higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and Controlled Fusio

    Infrared spectroscopy of small-molecule endofullerenes

    Full text link
    Hydrogen is one of the few molecules which has been incarcerated in the molecular cage of C60_{60} and forms endohedral supramolecular complex H2_2@C60_{60}. In this confinement hydrogen acquires new properties. Its translational motion becomes quantized and is correlated with its rotations. We applied infrared spectroscopy to study the dynamics of hydrogen isotopologs H2_2, D2_2 and HD incarcerated in C60_{60}. The translational and rotational modes appear as side bands to the hydrogen vibrational mode in the mid infrared part of the absorption spectrum. Because of the large mass difference of hydrogen and C60_{60} and the high symmetry of C60_{60} the problem is identical to a problem of a vibrating rotor moving in a three-dimensional spherical potential. The translational motion within the C60_{60} cavity breaks the inversion symmetry and induces optical activity of H2_2. We derive potential, rotational, vibrational and dipole moment parameters from the analysis of the infrared absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2_2@C60_{60}. The same parameters were used to predict H2_2 energies inside C70_{70}[Xu et al., J. Chem. Phys., {\bf 130}, 224306 (2009)]. We compare the predicted energies and the low temperature infrared absorption spectra of H2_2@C70_{70}.Comment: Updated author lis

    Dynamic Control of Laser Produced Proton Beams

    Get PDF
    The emission characteristics of intense laser driven protons are controlled using ultra-strong (of the order of 10^9 V/m) electrostatic fields varying on a few ps timescale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.Comment: 9 Pages, 5 figure

    Evolution of avalanche conducting states in electrorheological liquids

    Get PDF
    Charge transport in electrorheological fluids is studied experimentally under strongly nonequlibrium conditions. By injecting an electrical current into a suspension of conducting nanoparticles we are able to initiate a process of self-organization which leads, in certain cases, to formation of a stable pattern which consists of continuous conducting chains of particles. The evolution of the dissipative state in such system is a complex process. It starts as an avalanche process characterized by nucleation, growth, and thermal destruction of such dissipative elements as continuous conducting chains of particles as well as electroconvective vortices. A power-law distribution of avalanche sizes and durations, observed at this stage of the evolution, indicates that the system is in a self-organized critical state. A sharp transition into an avalanche-free state with a stable pattern of conducting chains is observed when the power dissipated in the fluid reaches its maximum. We propose a simple evolution model which obeys the maximum power condition and also shows a power-law distribution of the avalanche sizes.Comment: 15 pages, 6 figure
    corecore