136 research outputs found

    Optimizing Dialog Strategies for Conversational Agents Interacting in AmI Environments

    Get PDF
    Proceedings of: 3rd International Symposium on Ambient Intelligence (ISAmI 2012). Salamanca (Spain), 28-30 March 2012In this paper, we describe a conversational agent which provides academic information. The dialog model of this agent has been developed by means of a statistical methodology that automatically explores the dialog space and allows learning new enhanced dialog strategies from a dialog corpus. A dialog simulation technique has been applied to acquire data required to train the dialog model and then explore the new dialog strategies. A set of measures has also been defined to evaluate the dialog strategy. The results of the evaluation show how the dialogmodel deviates from the initially predefined strategy, allowing the conversational agent to tackle new situations and generate new coherent answers for the situations already present in the initial corpus. The proposed technique can be used not only to develop new dialog managers but also to explore new enhanced dialog strategies focused on user adaptation required to interact in AmI environments.Research funded by projects CICYT TIN2011-28620-C02-01, CICYT TEC2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029-C02-02.Publicad

    Analysis and Assessment of AvID: Multi-Modal Emotional Database

    Full text link

    Agent Simulation to Develop Interactive and User-Centered Conversational Agents

    Get PDF
    Proceedings of: International Symposium on Distributed Computing and Artificial Intelligence (DCAI 2011). Salamanca, 06-08 April 2011.In this paper, we present a technique for developing user simulators which are able to interact and evaluate conversational agents. Our technique is based on a statistical model that is automatically learned from a dialog corpus. This model is used by the user simulator to provide the following answer taking into account the complete history of the interaction. The main objective of our proposal is not only to evaluate the conversational agent, but also to improve this agent by employing the simulated dialogs to learn a better dialog model. We have applied this technique to design and evaluate a conversational agent which provides academic information in a multi-agent system. The results of the evaluation show that the conversational agent reduces the time needed to fulfill to complete the the dialogs, thereby allowing the conversational agent to tackle new situations and generate new coherent answers for the situations already present in an initial model.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02- 02/TEC, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029-C02-02.Publicad

    Discriminative power of EEG-based biomarkers in major depressive disorder: A systematic review

    Get PDF
    Currently, the diagnosis of major depressive disorder (MDD) and its subtypes is mainly based on subjective assessments and self-reported measures. However, objective criteria as Electroencephalography (EEG) features would be helpful in detecting depressive states at early stages to prevent the worsening of the symptoms. Scientific community has widely investigated the effectiveness of EEG-based measures to discriminate between depressed and healthy subjects, with the aim to better understand the mechanisms behind the disorder and find biomarkers useful for diagnosis. This work offers a comprehensive review of the extant literature concerning the EEG-based biomarkers for MDD and its subtypes, and identify possible future directions for this line of research. Scopus, PubMed and Web of Science databases were researched following PRISMA’s guidelines. The initial papers’ screening was based on titles and abstracts; then full texts of the identified articles were examined, and a synthesis of findings was developed using tables and thematic analysis. After screening 1871 articles, 76 studies were identified as relevant and included in the systematic review. Reviewed markers include EEG frequency bands power, EEG asymmetry, ERP components, non-linear and functional connectivity measures. Results were discussed in relations to the different EEG measures assessed in the studies. Findings confirmed the effectiveness of those measures in discriminating between healthy and depressed subjects. However, the review highlights that the causal link between EEG measures and depressive subtypes needs to be further investigated and points out that some methodological issues need to be solved to enhance future research in this field

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    A Conversational Academic Assistant for the Interaction in Virtual Worlds

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, 07-10 September , 2010.The current interest and extension of social networking are rapidly introducing a large number of applications that originate new communication and interaction forms among their users. Social networks and virtual worlds, thus represent a perfect environment for interacting with applications that use multimodal information and are able to adapt to the specific characteristics and preferences of each user. As an example of this application, in this paper we present an example of the integration of conversational agents in social networks, describing the development of a conversational avatar that provides academic information in the virtual world of Second Life. For its implementation techniques from Speech Technologies and Natural Language Processing have been used to allow a more natural interaction with the system using voice.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255, and DPS2008-07029-C02-02.Publicad

    Multi-Agent System (MAS) Applications in Ambient Intelligence (AmI) Environments

    Get PDF
    Proceedings of: 8th Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS`10). Salamanca (Spain), 28-30 April 2010Research in context-aware systems has been moving towards reusable and adaptable architectures for managing more advanced human-computer interfaces. Ambient. Intelligence (AmI) investigates computer-based services, which are ubiquitous and based on a variety of objects and devices. Their intelligent and intuitive interfaces act as mediators through which people can interact with the ambient environment. In this paper we present an agent-based architecture which supports the execution of agents in AmI environments. Two case studies are also presented, an airport information system and a railway information system, which uses spoken conversational agents to respond to the user's requests using the contextual information that includes the location information of the user.This work has been partially supported by CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02Publicad

    Bringing Statistical Methodologies for Enterprise Integration of Conversational Agents

    Get PDF
    Proceedings of: 9th International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 11). Salamanca, 6-8 April, 2011In this paper we present a methodology to develop commercial conversational agents that avoids the effort of manually defining the dialog strategy for the dialog management module. Our corpus-based methodology is based on selecting the next system answer by means of a classification process in which the complete dialog history is considered. This way, system developers can employ standards like VoiceXML to simply define system prompts and the associated grammars to recognize the users responses to the prompt, and the statistical dialog model automatically selects the next system prompt.We have applied this methodology for the development of an academic conversational agent.Funded by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC 2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029- C02-02.Publicad
    corecore