527 research outputs found
Electron Correlation and the c-axis Dispersion of Cu d_z^2: a New Band Structure for High Temperature Superconductors
Previously we showed the major effect of electron correlation in the cuprate
superconductors is to lower the energy of the Cu d_x^2-y^2/O p_sigma (x^2-y^2)
band with respect to the Cu d_z^2/O' p_z (z^2) band. In our 2D Hubbard model
for La_1.85Sr_0.15CuO_4 (LaSCO), the z^2 band is narrow and crosses the
standard x^2-y^2 band just below the Fermi level. In this work, we introduce
c-axis dispersion to the model and find the z^2 band to have considerable
anisotropic 3D character. An additional hole-like surface opens up in the z^2
band at (0,0,2pi/c) which expands with doping. At sufficient doping levels, a
symmetry allowed x^2-y^2/z^2 band crossing along the (0,0)-(pi,pi) direction of
the Brillouin zone appears at the Fermi level. At this point, Cooper pairs
between the two bands (e.g. (k uparrow x^2-y^2/k downarrow z^2)) can form,
providing the basis for the Interband Pairing Theory of superconductivity in
these materials.Comment: submitted to Phys. Rev. Lett. Related publications: Phys. Rev. B 58,
12303 (1998); Phys. Rev. B 58, 12323 (1998); cond-mat/9903088;
cond-mat/990310
Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study
We present time-dependent density functional theory (TDDFT) calculations for
single and dimerized Coumarin-343 molecules in order to investigate the quantum
mechanical effects of chromophore aggregation in extended systems designed to
function as a new generation of sensors and light-harvesting devices. Using the
single-chromophore results, we describe the construction of effective
Hamiltonians to predict the excitonic properties of aggregate systems. We
compare the electronic coupling properties predicted by such effective
Hamiltonians to those obtained from TDDFT calculations of dimers, and to the
coupling predicted by the transition density cube (TDC) method. We determine
the accuracy of the dipole-dipole approximation and TDC with respect to the
separation distance and orientation of the dimers. In particular, we
investigate the effects of including Coulomb coupling terms ignored in the
typical tight-binding effective Hamiltonian. We also examine effects of orbital
relaxation which cannot be captured by either of these models
Raman scattering in C_{60} and C_{48}N_{12} aza-fullerene: First-principles study
We carry out large scale {\sl ab initio} calculations of Raman scattering
activities and Raman-active frequencies (RAFs) in
aza-fullerene. The results are compared with those of .
Twenty-nine non-degenerate polarized and 29 doubly-degenerate unpolarized RAFs
are predicted for . The RAF of the strongest Raman
signal in the low- and high-frequency regions and the lowest and highest RAFs
for are almost the same as those of .
The study of reveals the importance of electron correlations and
the choice of basis sets in the {\sl ab initio} calculations. Our best
calculated results for with the B3LYP hybrid density functional
theory are in excellent agreement with experiment and demonstrate the desirable
efficiency and accuracy of this theory for obtaining quantitative information
on the vibrational properties of these molecules.Comment: submitted to Phys.Rev.
Experimental and Computational Studies of the Kinetics of the Reaction of Atomic Hydrogen with Methanethiol
Article on experimental and computational studies of the kinetics of the reaction of atomic hydrogen with methanethiol
- …