667 research outputs found

    Chaos-Order Transition in Matrix Theory

    Get PDF
    Classical dynamics in SU(2) Matrix theory is investigated. A classical chaos-order transition is found. For the angular momentum small enough (even for small coupling constant) the system exhibits a chaotic behavior, for angular momentum large enough the system is regular.Comment: 14 pages, Latex, 10 figure

    Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks

    Get PDF
    The origin of the micro-Gauss magnetic fields in galaxy clusters is one of the outstanding problem of modern cosmology. We have performed three-dimensional particle-in-cell simulations of the nonrelativistic Weibel instability in an electron-proton plasma, in conditions typical of cosmological shocks. These simulations indicate that cluster fields could have been produced by shocks propagating through the intergalactic medium during the formation of large-scale structure or by shocks within the cluster. The strengths of the shock-generated fields range from tens of nano-Gauss in the intercluster medium to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure

    Surface Electronic Structures and Field Emission Currents at Sodium Overlayers on Low-Index Tungsten Surfaces

    Full text link
    The total energy distributions (TEDs) of the emission currents in field emission and surface photofield emission and the overlayer-induced modifications in the surface electronic structures from the technologically important W surfaces with the commensurate W(100)/Na c(2x2), W(110)/Na (2x2) and W(111)/Na (1x1) overlayers are calculated. The TEDs obtained by our recent numerical method that extends the full-potential linear augmented plane wave method for the electronic structures to the study of field and photofield emission are used to interpret the shifts of the peaks in the experimental TEDs in field emission and photofield emission from the W(100) and W(110) surfaces at sub-monolayer and monolayer Na coverage. Hybridization of the 3s Na states with the pairs of dz2-like surface states of the strong Swanson hump in clean W(100) and surface resonances in clean W(111) below the Fermi energy shifts these W states by about -1.2 eV and -1.0 eV, thus stabilizing these states, to yield new strong peaks in the TEDs in field emission and photofield emission from W(100)/Na c(2x2) and W(111)/Na (1x1) respectively. The effect of Na intralayer interactions are discussed and are shown to shift the strong s- and p-like peaks in the surface density of states of W(110) below and above the Fermi energy respectively to lower energy with increased Na coverage, in agreement with experiments.Comment: 12 page

    Laboratory Characterization and Astrophysical Detection of Vibrationally Excited States of Vinyl Cyanide in Orion-KL

    Get PDF
    New laboratory data of CH2_2CHCN (vinyl cyanide) in its ground and vibrationally excited states at the microwave to THz domain allow searching for these excited state transitions in the Orion-KL line survey. Frequency-modulated spectrometers combined into a single broadband 50-1900 GHz spectrum provided measurements of CH2_2CHCN covering a spectral range of 18-1893 GHz, whose assignments was confirmed by Stark modulation spectra in the 18-40 GHz region and by ab-initio anharmonic force field calculations. For analyzing the emission lines of CH2_2CHCN species detected in Orion-KL we used the excitation and radiative transfer code (MADEX) at LTE conditions. The rotational transitions of the ground state of this molecule emerge from four cloud components of hot core nature which trace the physical and chemical conditions of high mass star forming regions in the Orion-KL Nebula. The total column density of CH2_2CHCN in the ground state is (3.0±\pm0.9)x1015^{15} cm2^{-2}. We report on the first interstellar detection of transitions in the v10=1/(v11=1,v15=1) dyad in space, and in the v11=2 and v11=3 states in Orion-KL. The lowest energy vibrationally excited states of vinyl cyanide such as v11=1 (at 328.5 K), v15=1 (at 478.6 K), v11=2 (at 657.8 K), the v10=1/(v11=1,v15=1) dyad (at 806.4/809.9 K), and v11=3 (at 987.9 K) are populated under warm and dense conditions, so they probe the hottest parts of the Orion-KL source. Column density and rotational and vibrational temperatures for CH2_2CHCN in their ground and excited states, as well as for the isotopologues, have been constrained by means of a sample of more than 1000 lines in this survey. Moreover, we present the detection of methyl isocyanide (CH3_3NC) for the first time in Orion-KL and a tentative detection of vinyl isocyanide (CH2_2CHNC) and give column density ratios between the cyanide and isocyanide isomers.Comment: 46 pages, 22 figures, 14 tables, 9 online table

    The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations

    Full text link
    Long-lived >100 MeV emission has been a common feature of most Fermi-LAT detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs 080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent with being produced by synchrotron emission of electrons accelerated to high energy by the relativistic collisionless shock propagating into the weakly magnetized medium. Here we show that this high-energy afterglow emission constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8} mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than the previous constraint by X-ray afterglow observations on day scale. This suggests that the preshock magnetic field is strongly amplified, most likely by the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte

    DANSSino: a pilot version of the DANSS neutrino detector

    Full text link
    DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text overlap with arXiv:1304.369

    High-temperature transport properties of BaSn1−xScxO3−δ ceramic materials as promising electrolytes for protonic ceramic fuel cells

    Full text link
    Protonic ceramic fuel cells (PCFCs) offer a convenient means for electrochemical conversion of chemical energy into electricity at intermediate temperatures with very high efficiency. Although BaCeO3- and BaZrO3-based complex oxides have been positioned as the most promising PCFC electrolytes, the design of new protonic conductors with improved properties is of paramount importance. Within the present work, we studied transport properties of scandium-doped barium stannate (Sc-doped BaSnO3). Our analysis included the fabrication of porous and dense BaSn1−xScxO3−δ ceramic materials (0 ⩽ x ⩽ 0.37), as well as a comprehensive analysis of their total, ionic, and electronic conductivities across all the experimental conditions realized under the PCFC operation: both air and hydrogen atmospheres with various water vapor partial pressures (p(H2O)), and a temperature range of 500–900 °C. This work reports on electrolyte domain boundaries of the undoped and doped BaSnO3 for the first time, revealing that pure BaSnO3 exhibits mixed ionic-electronic conduction behavior under both oxidizing and reducing conditions, while the Sc-doping results in the gradual improvement of ionic (including protonic) conductivity, extending the electrolyte domain boundaries towards reduced atmospheres. This latter property makes the heavily-doped BaSnO3 representatives attractive for PCFC applications. [Figure not available: see fulltext.] © 2022, The Author(s).We would like to give special thanks to Natalia POPOVA and Thomas BEAVITT for their performed proofreading

    Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction

    Full text link
    Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2 revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C associated with the disorder of the Fe vacancies. Irreversibility observed during the transition is likely associated with a mobility of intercalated Alkali atoms. Pressure-dependent synchrotron powder diffraction on Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that the I4/m superstructure reflections are present up to pressures of 120 kbar. This may indicate that the ordering of the Fe vacancies is present in both superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl

    Search for sterile neutrinos at the DANSS experiment

    Full text link
    DANSS is a highly segmented 1~m3{}^3 plastic scintillator detector. Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS detector is placed under an industrial 3.1~GWth\mathrm{GW_{th}} reactor of the Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m water-equivalent shielding against the cosmic background. DANSS detects almost 5000 ν~e\widetilde\nu_e per day at the closest position with the cosmic background less than 3%\%. The inverse beta decay process is used to detect ν~e\widetilde\nu_e. Sterile neutrinos are searched for assuming the 4ν4\nu model (3 active and 1 sterile ν\nu). The exclusion area in the Δm142,sin22θ14\Delta m_{14}^2,\sin^22\theta_{14} plane is obtained using a ratio of positron energy spectra collected at different distances. Therefore results do not depend on the shape and normalization of the reactor ν~e\widetilde\nu_e spectrum, as well as on the detector efficiency. Results are based on 966 thousand antineutrino events collected at 3 distances from the reactor core. The excluded area covers a wide range of the sterile neutrino parameters up to sin22θ14<0.01\sin^22\theta_{14}<0.01 in the most sensitive region.Comment: 10 pages, 13 figures, version accepted for publicatio
    corecore