1,788 research outputs found
Study of W± boson in the ALICE muon spectrometer: considerations and analysis using the HLT tool
W± bosons produced in proton-proton collisions can be observed in the ALICE muon spectrometer via their decay into single muons at a transverse momentum, pt ~ Mw/2 40 GeV/c. However the identification of these single muons is complicated by a large amount of muonic background, especially in the low pt region. Therefore, it is necessary to apply precise pt cuts below the region of interest. This can be done by means of the High Level Trigger (HLT). In this paper we present the performance of detecting high pt muons at the HLT level. In order to improve the momentum resolution of the L0 trigger, fast clusterization of the tracking chambers together with L0 trigger matching and fast tracking reconstruction is applied. This will reduce the background in the high pt muon analysis
A New Approach to the Optimal Target Selection Problem
Optimally selecting a subset of targets from a larger catalog is a common
problem in astronomy and cosmology. A specific example is the selection of
targets from an imaging survey for multi-object spectrographic follow-up. We
present a new heuristic algorithm, HYBRID, for this purpose and undertake
detailed studies of its performance. HYBRID combines elements of the simulated
annealing, MCMC and particle-swarm methods and is particularly successful in
cases where the survey landscape has multiple curvature or clustering scales.
HYBRID consistently outperforms the other methods, especially in
high-dimensionality spaces with many extrema. This means many fewer simulations
must be run to reach a given performance confidence level and implies very
significant advantages in solving complex or computationally expensive
optimisation problems.Comment: 10 pages, 14 figures, Extended version accepted to Astron. Astrophy
Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework
The High Level Trigger (HLT) system of the ALICE experiment is an online
event filter and trigger system designed for input bandwidths of up to 25 GB/s
at event rates of up to 1 kHz. The system is designed as a scalable PC cluster,
implementing several hundred nodes. The transport of data in the system is
handled by an object-oriented data flow framework operating on the basis of the
publisher-subscriber principle, being designed fully pipelined with lowest
processing overhead and communication latency in the cluster. In this paper, we
report the latest measurements where this framework has been operated on five
different sites over a global north-south link extending more than 10,000 km,
processing a ``real-time'' data flow.Comment: 8 pages 4 figure
Recommended from our members
Measurement of electromagnetic cross sections in heavy ion interactions and its consequences for luminosity lifetimes in ion colliders
The limitation of the luminosity lifetime in high energy heavy ion colliders like RHIC or LHC operating in ion mode is set by the very large cross section of beam - beam interactions. One of the dominant processes at relativistic energies is electron capture from pair production in the strong electromagnetic field provided by the high Z of the ions. The capture cross sections for Pb82+ interacting with a number of light and heavy solid targets have been measured using one of the high energy resolution 158 GeV/nucleon beams at CERN. Gas targets Ar, Kr and Xe have also been used. The results, together with results on electromagnetic dissociation, are discussed in terms of beam lifetimes for RHIC and LHC using extrapolations of the measurements to the corresponding collider energies
Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence
The cross section for coherent pair production by linearly polarised photons
in the 20-170 GeV energy range was measured for photon aligned incidence on
ultra-high quality diamond and germanium crystals. The theoretical description
of coherent bremsstrahlung and coherent pair production phenomena is an area of
active theoretical debate and development. However, under our experimental
conditions, the theory predicted the combined cross section and polarisation
experimental observables very well indeed. In macroscopic terms, our experiment
measured a birefringence effect in pair production in a crystal. This study of
this effect also constituted a measurement of the energy dependent linear
polarisation of photons produced by coherent bremsstrahlung in aligned
crystals. New technologies for manipulating high energy photon beams can be
realised based on an improved understanding of QED phenomena at these energies.
In particular, this experiment demonstrates an efficient new polarimetry
technique. The pair production measurements were done using two independent
methods simultaneously. The more complex method using a magnet spectrometer
showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for
publicatio
Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons
We present the first experimental results on the use of a thick aligned Si
crystal acting as a quarter wave plate to induce a degree of circular
polarisation in a high energy linearly polarised photon beam. The linearly
polarised photon beam is produced from coherent bremsstrahlung radiation by 178
GeV unpolarised electrons incident on an aligned Si crystal, acting as a
radiator. The linear polarisation of the photon beam is characterised by
measuring the asymmetry in electron-positron pair production in a Ge crystal,
for different crystal orientations. The Ge crystal therefore acts as an
analyser. The birefringence phenomenon, which converts the linear polarisation
to circular polarisation, is observed by letting the linearly polarised photons
beam pass through a thick Si quarter wave plate crystal, and then measuring the
asymmetry in electron-positron pair production again for a selection of
relative angles between the crystallographic planes of the radiator, analyser
and quarter wave plate. The systematics of the difference between the measured
asymmetries with and without the quarter wave plate are predicted by theory to
reveal an evolution in the Stokes parameters from which the appearance of a
circularly polarised component in the photon beam can be demonstrated. The
measured magnitude of the circularly polarised component was consistent with
the theoretical predictions, and therefore is in indication of the existence of
the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for
publicatio
- …